Machines Teach Astronomers About Stars
Field of stars and galaxies; Credit: NASA/JPL-Caltech

Astronomers are enlisting the help of machines to sort through thousands of stars in our galaxy and learn their sizes, compositions and other basic traits. 

The research is part of the growing field of machine learning, in which computers learn from large data sets, finding patterns that humans might not otherwise see. Machine learning is in everything from media-streaming services that predict what you want to watch, to the post office, where computers automatically read handwritten addresses and direct mail to the correct zip codes.

Now astronomers are turning to machines to help them identify basic properties of stars based on sky survey images. Normally, these kinds of details require a spectrum, which is a detailed sifting of the starlight into different wavelengths. But with machine learning, computer algorithms can quickly flip through available stacks of images, identifying patterns that reveal a star's properties. The technique has the potential to gather information on billions of stars in a relatively short time and with less expense.

Click here to read the entire story.