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Figure 1: co-temporal MDI and HMI 
magnetograms taken from our test 
set. Further co-aligned MDI and HMI 
128” x 128” patches are shown inset.

Instrument:	  MDI
Operation:	 1995 - 2011

Pixel Size: 	 2”
Cadence: 	 96 min.

HMI
2010 - present 

0.5”
12 min. (down to ~45 s)

(one year of overlap)
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Figure 2: Super-resolution MDI using 
a modified HighRes-Net.
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Aim: Develop an approach to convert and 
upscale line-of-sight magnetic field data 
to a reference survey in order to under-
stand long-term variability of the mag-
netic field on time-scales larger than the 
lifespan of a single instrument.

 a Data Pre-Processing
1.	 Standardize the Sun’s orientation and distance from the 	

	 detector such that the solar radius is constant over time 

2.	 Register & shift individual 128” x 128” patches (see in		
	 set regions, Figure 1) to account for orbital differences. 
 

b Neural Network Architecture
 
We use an Encoder-Decoder architecture based on High-
Res-Net (see, github.com/ElementAI/HighRes-net). The 
trained Neural Network (NN) output is shown in Figure 2.

c Loss Functions & Metrics
To train our supervised NN, we include a range of terms 
alongside MSE (mean-squared-error) loss, and evaluate on 
additional performance metrics.

1.	Loss Functions 
 
Histogram: The magnetic field distribution is non-Gauss-
ian; by implementing a differentiable histogram, we better 
preserve the observed distribution of magnetic field. 
 
Structural Similarity Metric (SSIM): Measure the per-
ceived similarity between images. 
 
Gradients: Preserve the gradients of the magnetic field. 

2.	Performance Metrics 
 
Information Entropy: To understand the informational 
content of the output over all spatial scales, and to diag-
nose hallucination in the NN.

d Error Estimation
We use a Bayesian framework as in Kendall & Gal (2017)
that decomposes uncertainty in to two components: epis-
temic (ignorance of the true data generating process), and 
aleatoric (the inherent noise). In practice, we implement 
this by adding Monte Carlo (MC) dropout in each convo-
lutional layer, and track both the mean and variance of the 
magnetic field values.

e Conclusions & Future Work

•	To our knowledge, this is the first application of Bayesian 
Neural Networks to a super-resolution problem. 

•	Earlier versions of this work were published in workshops 
at NeurIPS 2019 (Gitiaux et al 2019, arxiv: 1911.01486; 
Jungbluth et al 2019, arxiv: 1911.01490). 

•	Shortly, we will provide test users with the super-res-
olution output to understand the suitability for various 
science tasks.
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