Using an LSTM and Classification Methods to Determine Risk of dB/dt Threshold Crossings as Proxy for .

Geomagnetically Induced Currents -
MAGICIAN

Michael Coughlan?!, Amy Keesee'?, Victor Pinto?, Hyunju Connor3, Jeremiah Johnson* MIAVTLIALT
Machine Learning Algorithms for

!Department of Physics and Astronomy - University of New Hampshire, 2Institute for the Study of Earth, Oceans, and Space - University of New Hampshire Geomagnetically Induced Currents
3Department of Physics and Geophysical Institute - University of Alaska Fairbanks, “Department of Electrical and Computer Engineering - University of New Hampshire in Alaska and New Hampshire

Introduction Metrics/Precision-Recall

. The interaction between the solar wind and the Magnetosphere can produce Geomagnetically Induced Currents (GIC’s) . March 30-31, 2001 Storm Results ision- .
on the ground, which are capable of causing power outages and damage to crucial infrastructure.

. The ability to predict when and where these events may occur could allow us to avoid the worst of this damage.

J The use of physics-informed machine learning models can offer a computationally inexpensive method of predicting GIC
events using horizontal dB/dt as a proxy, though most models thus far have fallen short of consistently accurate
predictions. dB/dt was defined as:

The Precision-Recall curves are a way of
evaluating the skill of a model when dealing with Thresholds | 2011 Data | 2006 Data | 2001 Da

El imbalanced.d.ataset. Table 1 shows the ‘ n 2.187 2.498 5.860
percent of positive classes for each threshold in
, . | 18 | 0488 0.509 2.492
the testing set. For these degrees of imbalance, “___
a model of no skill would have an Area Under 0.081 0.164 0.759
the Curve (AUC) of near 0. “ 0.010 0.078 0.441
¢ None of the models exhibit the near perfect “n 0.043 0.268

score of 1, but all of the models show some skill. Table 1: Percent of positive classes for each testing set
e The metric scores in Table 2 were calculated using a greater or less than value of 0.5 for the predicted
probability of a threshold crossing. With a predicted probability of 0.5 or greater being considered a 1

dt TS
With N and E the North and East components of the magnetic field respectively.
. Here, a Long-Short Term Memory (LSTM) model was used to determine the risk of dB/dt going over thresholds of 9, 18,
42, 66, and 90 nT/min for the Ottawa (OTT) ground magnetometer station.
J Three storms were chosen for testing and removed from the training set: March 30, 2001 (~ -211nT), December 14,

dB, JdEz dN*?

2006 (~ -437nT), & August 05, 2011 (~ -126nT). : : ‘ : : e e d less than 0.5 bei 5
. The storms were chosen for several reasons; they represent different storm intensities, they occurred at different points an e§5 an U. eing a 0. X _ ) X
in the solar cycle, and there are minimal gaps in the data that needed to be interpolated over. Figre L Vo resus fortheVarch 001 o it poneonleft i s e e ines ini panels are the *  Two different models were implemented to optimize metric scores. The 9, 18, and 90 nT/min
results for the real data, and the other colors indicate the model's predicted probability of crossing the . o . .
e o e o e A T thresholds used a model that included an additional 30 minutes of the recovery phase of the storm in
M ethod/Data the training data, while the models for the 42 and 66 nT/min thresholds produced better scores
December 14-15 2006 Storm Results Precision-Recall 2006 Testing Data without the extra recovery time.

¢ All of the models achieved low POFD scores, indicating very few false alarms predicted.

* Several of the models were able achieve high POD scores, with the lowest threshold being above 0.7
and getting slightly worse as the thresholds are increased and the number of crossings is decreased.

e Thisis born out more in the FB scores, few of which are close to the perfect score of 1. A score below 1

indicates the model is predicting fewer crossings than the real data, which will artificially make

the POFD score lower, and a score above 1 means the model is predicting more crossings, inflating the

POD scores.

The August 2011 storm scored the lowest across the board for the HSS scores. This is most likely a

product of it being the least intense storm of the three examined. The December 2006 storm preforms

the best across the board with the exception of the 90 nT/min threshold where the March 2001 storm

scores higher. No HSS scores exceed a score of 0.8, meaning there is more work to be done to improve

. The model was trained exclusively on storm time data as defined by a SYM-H value of -50 nT or less for a minimum period of
2 hours.

. The storm data was extracted from a combined data frame of OMNI data and Supermag data from the Ottawa (OTT), mid-
latitude station.

. The input features included solar wind speed (VT, Vx, Vy, Vz), IMF_GSE (BT, Bx, By, Bz), proton density, dynamic
pressure, solar wind electric field, SYM-H, horizontal magnetic field (N,E), and ground magnetometer sin(MLT) and
cos(MLT).

. The LSTM layer utilized 30 minutes of time history to determine if the dB/dt value would go above a series of thresholds,
between 30 and 60 minutes into the future.

. The machine learning model consisted of a single LSTM layer with 'RELU" activation and a Dense output layer using 'softmax’
activation, implemented using TensorFlow with the Keras backend.

. The 'softmax’ activation layer allows the model to interpret the inputs to the layer as discrete probability distributions,
allowing us to interpret the outputs of a node as the probability of that node occurring. In this case the output of the node is

‘ Recan ™

the probability that dB/dt will cross the given threshold. Figure 1a: Model results for the March 2001 storm First panel on leftside s the true dB/dt panels are the resuts the models.
. The softmax activation can be described: for each threshold with the blue shaded area being a threshold crossing of the real data, and the other colors indicate the model's predicted probability of crossing the respective .. N . . . . .
E@) thresholds Figure 1b thes thresholds, for the ull testing data 2006 —March 2007. e Itisimportant to point out that all of the models miss the initial spike in dB/dt. If this cannot be
L4 . .. .
softmx(x;) = SR E)] ) resolved, it could negate much of the utility of this type of model.
j exp(x;) August 05-06, 2011 Storm Results Precision-Recall 2011 Testing Data

. The Probability of Detection (POD), Probability of False Detection (POFD), Frequency Bias (FB), and Heidke Skill Score (HSS)
were calculated. These metrics rely on the comparison of whether the actual and predicted values crossed certain
thresholds within a defined time period.

. The metrics above utilize a comparison of actual and predicted threshold crossings, where: A is a True Positive, where both
the actual and predicted cross the threshold, B is a False Positive, the actual does not cross but the predicted does, C is a
False Negative, the actual crosses but the predicted does not, & D is a True Negative, neither actual nor predicted cross the
threshold.

. To determine threshold crossings in the actual data, we calculated the maximum value in the 30 minute prediction window
and compared that value to the thresholds. Because the softmax activation function outputs a probability, predicted values
greater than or equal to 0.5 were considered positive predictions.

. The metrics, as well as the the Precision and Recall metrics used for plotting the Precision-Recall curves, are defined as:

Threshold | POD2011 | POD2006 | POD2001 | POFD2011 | POFD2006 | POFD2001 | FB2011 FB200! FB2001 HSS2011 | HSS2006 | HSS2001

Table 2: The metric scores for the thresholds of the three storms examined. A perfect score for the POD, FB and HSS is 1 and a POFD is 0
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Introduction

Accurately assessing asteroid threats relies on knowledge of the asteroid’s
pre-entry properties such as size, velocity, and mass. Directly measuring
these properties can be infeasible due to the sparsity of events and the
accuracy and fidelity of various sensors. Current analysis of an asteroid’s
pre-entry properties involves modeling the asteroid’s entry into the Earth’s
atmosphere. This process can be time consuming and can require manual
adjustment of uncertain modeling specific parameters.

NASA Ames has developed a genetic algorithm that can help automate
asteroid modeling using the Fragment-Cloud Model (FCM). The algorithm
generates realistic energy deposition curves based on actual energy
deposition curves from real, observed asteroids. By using these synthetic,
labeled energy deposition curves, we developed a one-dimensional
convolutional neural network that can predict an asteroid’s pre-entry
parameters.

Motivation

* Assessing asteroid treats depends on successful characterization of the
asteroid’s physical properties

e Current methods requires manual modeling of parameters to match the
observed energy deposition curves

* Inferring the pre-entry parameters directly from the energy deposition
curve rather than modeling entries to match an observed event would
greatly improve risk assessments of new asteroids

Data

* The data generated by FCM produces energy deposition curves from
100 km to 0 km with a resolution of 1km

la mh

e The dataset has 2.4 million energy deposition curves

la mh

e The data 1is split 88/2/10 for training, training validation, and testing

e The real asteroids are hand-modeled with FCM to match the
documented results from other papers and are used for result validation

mm Distribution

Diameter (m) Uniform
Velocity (km/s) 11 25 Uniform
Entry Angle (°) 10 90 Uniform
Bulk Density (g/cm”3) 1.1 4.0 Uniform
Strength (kPa) 1 15000 Log Uniform
References

¢ Tarano, Ana Maria, et al. “Inference of Meteoroid Characteristics Using a Genetic Algorithm.” Icarus, vol. 329, 1 Sept.

2019, pp. 270-281., do1:10.1016/j.icarus.2019.04.002.

Wheeler, Lorien F., et al. “Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid
Structures.” Icarus, vol. 315, Nov. 2018, pp. 79-91., do1:10.1016/j.1carus.2018.06.014.

Using Machine Learning to Infer Pre-Entry Properties for
Asteroid T hreat Analysis

Ana Maria Tarano, atarano(@stanford.edu

Method

1. Model Asteroid Entries

/ Initial
Conditions

Flight Integration
(meteor equations of

motion, ablation) Fragment-Cloud Model

(breakup and energy deposition)

Airburst Altitude
(peak energy deposition)

y
\f
o .

Initial Conditions

« Diameter

* Density

« Strength

* Velocity

« Entry angle

« Strength scaling a

 Ablation coefficient o

* Number of fragments

* Fragment mass
distribution

IVIodeI

Input: log scaled energy deposition (EDEP) curve

* Augmented, one-dimensional convolutional neural network

* 3 one-dimensional convolutional layers

* 5 augmented variables: total kinetic energy (KE), mean KE, max KE, and

altitude at max KE of the input EDEP curve
* 3 dense layers
* Output: prediction of 1 pre-entry parameter

Results

* 5 separate models for each parameter

* Results validated with real modeled asteroids shown 1n the bar graphs
* Tested with with 10 percent of the synthetic data shown 1n the error .
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Conclusions

*  We can make predictions on real asteroid properties based on a
synthetically generated dataset

*  We show that our model is quite good at predicting diameter and

velocity, and reasonably good at predicting entry angle, bulk

density, and strength, for both the real cases as well as the test

portion of the dataset

Extensions to this concept include predicting pre-entry parameters

based on light curve data and partial energy deposition curves
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1. Summary
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Aim: Develop an approach to convert and
upscale line-of-sight magnetic field data
to a reference survey in order to under-
stand long-term variability of the mag-
netic field on time-scales larger than the
lifespan of a single instrument.

@ Data Pre-Processing

1. Standardize the Sun’s orientation and distance from the
detector such that the solar radius is constant over time

2. Register & shift individual 128” x 128” patches (see in
set regions, Figure 1) to account for orbital differences.

® Neural Network Architecture

We use an Encoder-Decoder architecture based on High-
Res-Net (see, github.com/ElementAl/HighRes-net). The
trained Neural Network (NN) output is shown in Figure 2.

® Loss Functions & Metrics

To train our supervised NN, we include a range of terms
alongside MSE (mean-squared-error) loss, and evaluate on
additional performance metrics.

1. Loss Functions
Histogram: The magnetic field distribution is non-Gauss-
lan; by implementing a differentiable histogram, we better
preserve the observed distribution of magnetic field.

Structural Similarity Metric (SSIM): Measure the per-
celved similarity between images.

Gradients: Preserve the gradients of the magnetic field.

2. Performance Metrics

Information Entropy: To understand the informational
content of the output over all spatial scales, and to diag-
nose hallucination in the NN.

Stanford

® Error Estimation

We use a Bayesian framework as in Kendall & Gal (2017)
that decomposes uncertainty in to two components: epis-
temic (ignorance of the true data generating process), and
aleatoric (the inherent noise). In practice, we implement
this by adding Monte Carlo (MC) dropout in each convo-
lutional layer, and track both the mean and variance of the
magnetic field values.

© Conclusions & Future Work

¢ [0 our knowledge, this is the first application of Bayesian
Neural Networks to a super-resolution problem.

e Earlier versions of this work were published in workshops
at NeurlPS 2019 (Gitiaux et al 2019, arxiv: 1911.01486;
Jungbluth et al 2019, arxiv: 1911.01490).

e Shortly, we will provide test users with the super-res-
olution output to understand the suitability for various
science tasks.

NN Output
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Abstract

Geomagnetically induced currents (GIC) can drive =
power outages and damage power grid 5-6Aug2011fE L I\ 17-18 Mar 2015 17-18 Mar 2013

components while also affecting pipelines and train
systems. Developing the ability to predict local GICs
is important to protecting infrastructure and
limiting the impact of geomagnetic storms on
public safety and the economy. While GIC data is
not readily available, variations in the magnetic
field, dB/dt, measured by ground magnetometers
can be used as a proxy for GICs. We are developing
a set of neural networks to predict the east and
north components of the magnetic field, B; and By,
from which the horizontal component, By, and its
variation in time, dBy/dt, are calculated. We apply
two techniques for time series analysis to study the| -,
connection of solar wind and interplanetary
magnetic field properties obtained from the OMNI
dataset to the ground magnetic field perturbations.
The analysis techniques include a feed-forward
artificial neural network (ANN) and a long-short
term memory (LSTM) neural network. Here we
present a comparison of both models’ performance
when predicting the By component of the Ottawa
(OTT) ground magnetometer for the year 2011 and
2015 and then when attempting to reconstruct the
time series of By for two geomagnetic storms that
occurred on 5 August 2011 and 17 March 2015. Mﬂm l
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to the ANN. We also want to determﬁne the percentage correct (PC), and Heidke ANNHSS  0.13 000 000 000 056 042 000 000 Keesee AM, Pinto V, Coughlan M, Lennox C, Mahmud MS and
iTi i i Skill Score (HSS). LSTMHSS 0.09 004 0.10 000 0.19 023 0.19 0.00 Connor HK (2020) Front. Astron. Space Sci. 7:550874. doi:
ability for a forecasting model, requiring a ( ) 10.3380/fspas. 2020550874

time delay for the model input. Four threshold values in nT/min are used.




Poster 58

AT A
GLANCE

 Using a multi-channel
solar dataset from SDO
and labels using
conventional image
processing, we trained a
neural net to segment
solar features.

* We found using an LSTM-
Unet hybrid created better
convergence over a Unet.

* Including well known
physics, like the PDF of
sunspot locations,
increased the accuracy of
the model.

* The LSTM-Unet
approach is only as
good as the labels. We
are currently working on
a “fuzzy-labeling
approach to introduce
uncertainties to the
training data.

For more information contact

michael.s.kirk@nasa.gov

NASA GODDARD SPACE FLIGHT CENTER | ASTRA LLC

DEVELOPING DEEP LEARNING FOR
SOLAR FEATURE RECOGNITION

Michael S. Kirk, Raphael Attie, James Stockton, Matt Penn, David Hall, Barbara Thompson

The Solar Dynamics Observatory (SDO) images the sun in extreme
ultraviolet wavelengths (left) to reveal several features that evolve
and influence the Earth: sunspots, coronal holes, and active regions
(labels of these are shown in the image on the right). Our goal was to
encode classical methods of feature labeling using ML to be able to
run on the full 200 million image archive where conventional
methods would not be able to perform.

GRAY BOX MODEL

Encode existing scientific knowledge
into a machine learning architecture.

Sunspot Locations (AIA 1934) BCE loss = 0.01354

accuracy of the model. We included a probability density function of

measured labels of active regions (shown on the right).

ALTAMIRA

Adding in known systematics and physical phenomena greatly increased the
sunspots (shown left), a function to model the degradation of the detectors,

and six temporal signatures that are well known — both physical signals and
systematic errors. The accuracy could be gauged by comparing predicted vs.

NNASN

|~

Input image
tensor sequence Output segment map

512x512x32x3 512x512x32x3
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i
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i} ------------- > o J

Copied Feature Maps
Bi Directional ConvLSTM
Decoder Block
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A Unet architecture is well suited to the high-resolution SDO images to detect solar
features of various size. In training the Unet, we down-sampled the images by a factor of
4 to be able to include all 11 wavelength bands SDO produces. Not every solar feature is
observed in each channel, but we wanted to make sure the Unet was judging the saliency
of each channel correctly.

Because solar features evolve in time, we implemented a long short-term memory
(LSTM) architecture on each layer of the Unet by passing a tensor of [t-1, t,

t+1] through the pooling and up-sampling steps (shown above). This hybrid LSTM-
Unet approach greatly improved the accuracy and convergence of the model (shown
below). The drawback of the hybrid approach is that it requires 3-times the memory for
training, which makes full resolution, 4k x 4k, images difficult to work with.

UNET UNET LSTM
Legacy Based Mask DL Probability Map DL Probability Map
Active Region_SPoCA CH

1.00

1.00

0.75

0.50

0.25

0.00 0.00

Despite the robust models, there are still significant disagreements between the
legacy labels and the DL probability maps (show above). Examining the input
images raises the question if there is some error in the legacy labels. Currently
we are working to create a probability map of training labels to better capture the
uncertainty inherent in the solar features.

This work was a partnership between NASA, NVIDIA, and Altamira.

NVIDIA.
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59. CORRELATION OF AURORAL DYNAMICS AND GNSS SCINTILLATIONS WITH AN AUTOENCODER

Kara D. Lamb'%*, Garima Malhorta®*, Athanasios Vlontzos**, Edward Wagstaff>*, Atilim
Gunes Baydin>, Anahita Bhiwandiwalla®, Yarin Gal>, Alfredo Kalaitzis”, Anthony Reinas, Asti

9
Bhatt i 1). CIRES 2). NOAA ESRL 3). University of Michigan 4).:lmperial College London 5). University
*equal contributions of Oxford 6). Intel Al Lab 7). Element Al 8). Intel AIPG 9): SRI International

PROBLEM

PROBLEM SETTING
S PACE AURORA

WEATHER
IMPACTS

T N ) NN T ‘

|
B, "W\ \i {
e\ L & CHAIN Network (GNSS receivers) }

X

SATELLITES N COMMUNICATIONS

Q\ Google Earth /i
HUMA N. SPACE Da taSIO NOAA, us Navy, NGA, GEBCO - ﬂi‘ f;w

EXPLORATION - . AVIATION®  ELECTRIC POWER i

1 eIBCAO | i P g | ; N A
Misoe US. Geological Survey |/ & S S | View from Space (Altitude: 3345 mi)¥

Signals from Global Navigation Satellite System

(GNSS) satellites are altered in phase and amplitude Scintillations are known to correlate with visible
by ionospheric scintillations. These scintillations can aurora. To investigate this correlation, we use data
cause a loss of spatial tracking and time information. from several observation networks in N. Canada
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SOLUTION

QUESTIONS

* Are specific structures within the visible aurora more likely to correlate with the occurrence of GNSS
phase scintillations?

 Can an unsupervised approach to aurora image classification improve our understanding of this
correlation?

AUTOENCODER
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The encoder and decoder uses a U-Net like architecture Res-AE hitect f 4
In order to learn image structures at different scales. €s-AL architecture for encoder.
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We use measurements of the Ionospheric phase

scintillation index (o), the standard deviation of the 35,277 raw images from THEMIS all-sky

detrended carrier phase, averaged over 60 s. Imagers are projected onto a latitude-
longitude grid. This data set was used to

THEMIS IMAGE CLASSES train the auto-.encoder

7700 manually annotated auroral images, classified among 6 classes

ARC DIFFUSE DISCRETE CLEAR MOON CLOUDY

M O

AURORA CLASSES NON-AURORA CLASSES
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RESU LTS Aurora Embedded via tSNE Aurora Embedded via UMAP
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diffuse

Visualization of aurora images in the latent space using tSNE (left) and UMAP (right). Unsupervised clusters
typically correlate with human-annotated image classes and show similar clusters using both tSNE and UMAP.

Aurora Embedded via UMAP
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Some clusters in the latent space (left) are more likely to be associated with higher phase scintillations (right).
Clusters containing discrete and arc aurora classes are associated with higher phase scintillations.

For additional information see our paper:-https://arxiv.org/abs/1910.03085




Complex Data Explorer (CODEX) — A multi-use Machine
Learning Powered Tool for Rapid Data Exploration

Jack Lightholder, Lukas Mandrake, Josh Rodriguez, Rob Tapella, Patrick Kage
jack.a.lightholder@jpl.nasa.gov

/ Abstract \

Modern science datasets from missions like OCO-2 and telemetry records 1n Ops may have 500+ simultaneous measurements at each of millions of time samples.
Scientists would often like to look through the record and discover not only expected trends but ones they did not initially guess, while Ops personnel perform the same
task under serious time pressure should an anomaly occur. In both cases, the optimal environment for this rapid exploration large data would be one where visualizations
were clear, interactive, and responsive, permitting the investigator to “play” with the data and gain rapid insight, falsify hypothesis, and make discoveries. Machine
Learning (ML) has proven invaluable in providing some of these key data insights, but to do so 1n a statistically robust and reliable manner requires a data science
professional and a lot of custom Python code, losing any sense of interaction and play. CODEX will address these concerns by providing a desktop-like environment with

\ standard scientific graph types that are robust to rapid, powerful exploration. /
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* Interrogate relationships between cols
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* Provide simple recipe to recognize
events

* Create predictive, explanatory models
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present? SI02vs.TIO2 B AROSw FeOT B Cluster

Intuitive exploration of the impact of algorithms, and their parameters settings, on your data.

;I_e]t)‘gONrk{f Machine Learning was made for this: 3 Rapidly explore algorithm categories to see which meet the needs of your application,
Performance y sl without writing custom code every time!
Fast Hypothesis Testing / Guiding Principles \
.. * Easy, interactive graphing * Fastinteractivity
Fils + Graphs «  Algorithms + Reports »  Development + - scatter, heatmap, histogram, line, bar - Humans learn best by
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/ Capabilities \ / Conclusions \

* Fast discovery of data 1ssues & problems

* Clustering
* Regression
e (lassification
* Dimensionality
Reduction
* Feature Selection

* Endmember
User Defined Region Analysis

 Fast intuition building

* Powerful ML techniques made visual

* Guidance for every step of exploration

- * D 't replace Pyth MATLAB
¢07 AMGEP ‘. + Anomaly Finding oesn 't replace Python or

1102 RAMSEP 3 * Interactive / Linked * Does start you off ready to do great work
A1903 BMCED | 3. k Graphlng /

Saved Selections

" , / Future Infusion & Applications \

* Mission operations data — build quick intuition about vehicle health and
conduct on the fly trending.
* Science data — explore data sets to locate areas of mterest for deeper study.
 Complex data interactions — leverage machine learning to gai insights to
- /

data characteristics which separate populations of data.
Intuitive exploration of multiple data components. Draw plot regions to see where
those data points are in other aspects of your data for rapid intuition building. Contact: Jack Lightholder (jack.a.lightholder@jpl.nasa.gov) - Poster 60
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Innovation: Onboard Summarization for Science

Global Imagems
Summarization
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Scientists in Control

Innovative Concepts
o Leverage Upcoming Space Computing

» Leave camera on & process everything « Scientists reconfigure COSMIC on-the-fly

« Trustable science autonomy « COSMIC sends reports on global change

o Store content-based summarizations « Scientists more informed to react:

« Perform change detection between summaries * Request targeting of observed change?
+ Can now trade onboard compute for bandwidth! * Request tiny snapshots already waiting?
+ Many kinds of change can be captured * Request high-res monitoring of a site?

« Camera + compute + COSMIC is new smart instrument!  * Miss a comm pass? COSMIC keeps working.



Change Detection Capabilities & Progress

Known Science Targets / ot TRL~5

(surface classification) « Tested on entire CTX database
« Know what, but not where/when e Actual science discoveries attained!
« Can look for any surface feature » Related task infused into PDS archive

« Needs example images for training » Ready for flight-oriented maturation
« Alerts provide time/space map

o Works on entire globe

TRL~3

» Feasibility study complete on real data

e Computational goals met

* New change-detection req: Stability

« Refinement needed for specific science
use-cases and rigorous V&V

Agnostic Change Detection
(image-summary-based change)

o Don’t know what, where, or when

» Discover new transients

o Global reports on change characterization
» Agnostic to expectation or known targets

TRL~3.5

» Excellent performance on small tests
using real & synthetic data

« Tolerant to expected operational
environment

» Ready for rigorous V&V

Region Monitoring
(Pixel change for small areas)

e Know where, but not what/when

» Classical change detection

e Only a ~1k small regions at a time

» Alerts when something starts to happen




GNSS reflection measurements can be calibrated
with data from SMAP to yield estimates of soil mois-
ture with increased spatiotemporal resolution, use-
ful to certain hydrological/meteorological studies.
Current approaches which use simple models of the
relation between the DDM (delay-Doppler map) and
soil moisture which can fail in certain regions. Com-
plex information contained in the complete 2D DDM
could help in these regions, and can be extracted
through the application of deep learning based tech-
nigues. This approach simultaneously provides the
ability to incorporate additional contextual informa-
tion from external datasets. Our work explores the
data-driven approach of convolutional neural net-
works (CNNs) to determine complex relationships
between the reflection measurement and surface
parameters. CYGNSS DDMs were aligned with

SMAP soil moisture values and ancillary datasets, a
network was developed and trained with these mea-
surements, the results of which are analyzed and
compared to existing global soil moisture products.

Motivation and Concept

A comparison of the spatial and temporal resolu-
tions attainable with SMAP vs CYGNSS, globally for
a single day, and composite over the Amazon river.
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CYGNSS DDMs are calibrated with SMAP mea-
surements, and are used to estimate soil moisture.

The full interpretation of DDMs is a complex prob-
lem, current methods use simplistic models.

Extracting Information from DDM Parameters that Influence DDM

Surface parameters:
* Topography
* Surface water
* Land cover
* Vegetative content
* Surface roughness
* Soil moisture
* Wind (over water)

Varying Conditions

Spacecraft parameters:
* Tx/Rx EIRP/Gain
\ * Specific Tx
* Specific Rx
* Tx/Rx issues

AN

Geometry:
* Tx/Rx separations

* Angles to reflection specular point
* Location of reflection specular point

Using a single
1D Profile

Calculating
scalar metrics

Kejoqg awi

Doppler Shift

Entire DDM contains complex, but
valuable, information!

CNNs extract complex structural features from the
DDMs while integrating contextual information to
build data-driven models of the reflecting conditions.

A DEEP LEARNING APPROACH TO GNSS-R:
PREDICTING SOIL MOISTURE WITH DELAY-DOPPLER MAPS

Dr. T. Maximillian Robertst, lan Colwell, Dr. Rashmi Shah, Dr. Stephen Lowe, Dr. Clara Chew:

Jet Propulsion Laboratory, ¥University Corporation for Atmospheric Research

Delay-Doppler Map

Convolutional Neural Network
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CYGNSS Input Data

Dataset Development

Parameters which influence the DDM were deter-
mined and corresponding datasets were aggre-
gated (see below table). Each dataset was stud-
led to understand the characteristics, outliers, and
indicators of problematic values.

Per DDM CYGNSS 0.5-7 km 0.5-7 km
Per DDM CYGNSS DDM-scale DDM-scale
Per DDM CYGNSS DDM-scale DDM-scale
Per DDM CYGNSS DDM-scale DDM-scale
Per DDM CYGNSS DDM-scale DDM-scale
Static  SMAP L1-L3 Ancillary 1km 3 km
Daily  SMAP L1-L3 Ancillary 1km 3 km
Static/Daily Calculated 1 km 3 km
Static GlobCover 1km 3 km
Static  SMAP L1-L3 Ancillary 1km 3 km
Daily  SMAP L1-L3 Ancillary 36 km 36 km
Static Pekel 30 m 3 km
Daily SMAP 36 km 36 km

Data from different sources are “aligned"”, spatially
and temporally, to fall within the same 3 km EASE
grid cell on the same day. These training sam-
ples are compiled into a database with features
designed for efficient processing.

600000 - Actual SM distribution Original

Resampled
500000 - /

3 400000 -

nts

C

2 300000

ni

2 200000 -

100000 A

0 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Soil Moisture

Training sets are filtered, standardized, and “bal-
anced" to optimize for training. The above shows
the balancing process, where some values are un-
dersampled and others are oversampled to create
an even distribution. Catergorical scalar data (like
land type) are encoded to “one-hot" array inputs.

convolutional feature
extraction

Elevation .

Ancillary Data

Development of the neural network was broken in
two; developing a CNN specifically tuned for pro-
cessing DDMs, and building a complete network
for prediction of soil moisture.

1

Convolutional layer(s)
Learn DDM features

i dropout_2: Dropout
L " ——

flatten_2: Flatten latitudes_input: InputLayer longitudes_input: InputLayer land_values_input: InputLayer

\x / R
concatenate_2: Concatenate

”

Dense Iayer(S) dense_9: Dense
Learns relationship
between all data

Optimization of DDM-specific CNN was studied
with the toy-problem of land-type classification
(blue layers only); DDM only input, land value is
the target. Common CNN architectures were ex-
plored, and DDM augmentation and resolution en-
hancement was tested.
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A complete network (blue, yellow, and pink layers)
architecture able to accept various ancillary inputs
was developed to estimate soil moisture, integrat-
ina the DDM-tuned CNN.

Resulting Data Product

build datasets with
training network

predict Soil Moisture

Value

test against target

Analysis and Results

Network performance is established using unseen
data split from the original dataset composed of
randomly distributed points in space and time.
Passing these samples through the network, a
strong correlation between the predictions and tar-
gets (Pearson coefficient of 0.89) demonstrates
the technique’s potential. Dataset preprocessing,

training, and analysis is repeated iteratively.
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Bias toward underestimation of high SM values
can be seen, likely a result of the balancing pro-
cess. Other issues, such as RFI and problematic
SMAP data are also revealed through analysis.

RFI during Reflection Bad Data
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Jet Propulsion Laboratory
California Institute of Technology

Network predictions are compared on a global
scale to existing SM product of SMAP and UCAR
averaged to 36 km EASE grid cells for the entire
year of 2018. Qualitative comparison shows over-
all trends in strong agreement. However, areas
with expected high SM content display less de-
tailed structure.

SMAP Product (2018 Average)
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Differences between predictions and the UCAR
product are seen to strongly correlate with prob-
lematic SMAP quality flags removed from training

data. Biases are likely created by removing sam-
ples over high surface water fraction.

Difference between SMAP and CYGNSS-based Predictions (2018 Average)
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This work has shown CNNs can be used to in-
terpret DDMs directly with opportunity for signif-

icant improvement. Immediate follow on studies
will further refine dataset filtering and spatiotempo-
ral averaging, and add valuable, missing ancillary
datasets (such as “distance-to-water”). More ad-
vanced work will create “ensembles” of networks
for regional prediction, implement vector inputs for
ancillary data (input region of values, not aver-
age), and include in situ measurements in train-
iIng as “high value” targets. Futhermore, this con-
cept is generalizable to other surface retrievals
and product development such as “freeze-thaw”,
flood/inundation, and water masks.

fContact email: t. maximillian.roberts@jpl.nasa.gov

*Modified from Chew et al. 2019.
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