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Introduction

The Plasma Instrument for Magnetic Sounding (PIMS)
on the Europa Clipper mission aims to characterize the
properties of the Jovian plasma surrounding Europa,
providing insight into Europa’s cryovolcanic activity and its
subsurface ocean.

Mode-Switching in PIMS

Figure 1: PIMS modes as currently planned.

PIMS operates in 4 different modes, depending on prior
estimates of the magnetic field boundaries and the
distance to Europa. To account for uncertainty in these
estimates, PIMS spends significant amount of time in a
transition mode.

The Key Question

Can we instead make PIMS responsive, and switch
modes automatically based on its current observations?

Detecting Magnetic Field Boundaries

At each time step, PIMS counts the number of particles
within energy ‘bins’:

Figure 2: Magnetic field boundaries of Saturn as seen by an
analogous instrument, the CAPS ELS on the Cassini mission.

We cast this as an anomaly detection problem over
multidimensional time series.

To deal with the lack of knowledge about the true
magnetic field boundaries around Europa, we investigate
unsupervised methods.

We can evaluate these methods using labelled data from
the Cassini mission.

Results on Cassini Data

0.00 0.25 0.50 0.75
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(a)Bow shock

0.0 0.2 0.4 0.6 0.8
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Baseline
HOT SAX
Matrix Profile
RuLSIF
Bayesian HDP-HMM
Non-Bayesian HMM

(b)Magnetopause

Figure 3: Test performance on around 2300 crossings spread across
years 2005 to 2012. Parameters were optimized using 60 crossings
from 2004.

Our Key Contributions

� We evaluate four unsupervised approaches to
identify magnetic field transitions in CAPS data.

� We propose an extension to the Matrix Profile for
anomaly detection in multidimensional time series.

� We show that bow shock transitions from CAPS
data can be detected best by the
Multidimensional Matrix Profile and the
non-Bayesian HMM.

� We find that all four approaches struggle to
identify magnetopause transitions from CAPS
data. Significant differences between spacecraft
orbits across years limits the generalizability of
parameters optimized on a single year: online
adaptation may be beneficial.
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GPU Saturation Testing with Variable Applications and Storage Platforms

Illustrated to the left is the GPU utilization and read activity from the same
application accessing data on NFS storage. The GPUs never achieve

maximum utilization, and the NFS storage fails to deliver a steady stream of
data to the application. The training application takes nearly 2000 seconds

to complete.

Illustrated to the right, is the GPU utilization and read activity from the ai-configured storage appliance. The
GPUs achieve maximum utilization by using the storage appliance to deliver a steady stream of data
through the training process. The application takes 933 seconds to complete. At approximately 660

seconds, the data set is fully loaded into the DGX-1 server and the application no longer needs to read
the data from the storage appliance.

The graph on the left, demonstrates training application performance with resnet-50, resnet-152 and inceptionV3 models
using different numbers of GPUs on a single DGX- 1 server. The resnet-152 and inceptionV3 tests were executed with the
NVIDIA TensorFlow 18.03-py2 dockerfile and a data set from the ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012). The resnet-50 test was executed with the NVIDIA TensorFlow 18.09-py3 dockerfile and same data set

Poster Number:34   Authors: Brian Cox BRCox@DDN.com and Aaron Knister AKnister@DDN.com

By design, the GPU architecture
provides facilities for massive

processing concurrency. Some GPU
based applications distribute over 96
nodes simultaneously, touching 1500

GPUs. These application profiles
necessitate parallel data paths that
deliver data with high-throughput,

low-latency and massive concurrency,
directly to GPU memory.



Supporting Global Knowledge Sharing using Cross Language Information Retrieval
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Possible Applications

Cross Language Information Retrieval (CLIR)
CLIR is a special case of Information retrieval in which the language 
of the documents differs from the language of the query.

CLIR Architecture

Information Retrieval
Information retrieval is searching for the relevant documents in a 
large collection of documents using a query input by the user. The 
aim of the search engine is to return documents relevant to the 
query.

Beyond CLIR

● Chinese technical publications might be of value to NASA engineers 
working on similar problems.  

● Understanding the global reaction to NASA's activities would benefit 
from systems that could process Hindi and French as easily as 
English.

● Allowing search in the oral history archives.  The interviews in the 
Shuttle-MIR oral history collection were conducted in English; 
people who could speak only Russian simply weren't interviewed,

This research has been supported by the Office of the Director  of  National  Intelligence  (ODNI),  Intelligence  Advanced  Research  Projects  Activity  (IARPA),  via  contract 
FA8650-17-C-9117.  The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, 
either expressed  or  implied,  of  ODNI,  IARPA,  or  the  U.S.  Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental 
purposes notwithstanding any copyright annotation therein.
Retrieval results were provided by the participants of the 2021 Johns Hopkins HLTCOE Mini-SCALE workshop.

● “Documents” might be speech or video.
● Text might be printed or handwritten.
● Content or queries may include several languages.
● Queries might be structured or simple.
● Information need might be narrow or broad.
● Summaries of relevant documents might be needed.
● Summaries and documents may need translation.
● How quickly can we build systems?

● Documents or queries are translated into compatible 
representations using machine translation or dictionaries.

● Search engines can handle ambiguity and translation errors 
well using multiple translation variants.

● Ranking based on embeddings (dense vector representations) of 
terms, sentences or segments.

● Ensemble methods can improve robustness.

Identify documents that 
discuss the British/French 
cooperative effort in the 

development/operation of 
the Concorde Supersonic 

Jet.

On November 29, 1962, 
Britain and France 

signed a treaty to share 
costs and risks in 

producing an SST...

Query

Search 
Engine

Relevant 
Documents

Document 
Collection

British Aerospace and 
the French firm 

Aérospatiale were 
responsible for the 

airframe, while Britain’s 
Rolls-Royce and 

France’s ...

Identify documents that 
discuss the British/French 
cooperative effort in the 

development/operation of 
the Concorde Supersonic 

Jet.

Document 
Collection

Search 
Engine

L'entreprise française 
Sud-Aviation et 

l'entreprise britannique 
Bristol Aeroplane 

Company ...

e traité de coopération, 
dont les discussions 

durèrent environ un an, 
fut signé le 29 

novembre 1962. . 
British Aircraft 

Corporation (BAC) et ...

Relevant 
Documents

CLIR vs. Monolingual IR
System Mean Average Precision

Monolingual IR (Russian queries)
BM25 0.345

Cross-Language IR (English queries)
Document translation + BM25 0.336

Cross-Language IR (English queries)
Document translation + embeddings 0.434

Table 1. Comparison of the monolingual and crosslingual retrieval 
on the Russian 2003 and 2004 collections. Documents are in Russian, 
queries are either in Russian or English.



Solar Flare Prediction
using Convolutional Neural Nets (37)

Abstract 1
During my time with the Space Weather Lab at George Mason University (GMU), most of our research was focused 

on Active Regions (AR) on the Sun's surface. Recent work with Goddard's Heliophysics Lab has opened my field to the 
uses of Artificial Intelligence (AI) and Artificial Neural Networks (ANN). ARs are one of the last natural phenomena that 
we don't fully understand what governs its movements and actions. This problem was a great fit to use an ANN 
algorithm to determine and decipher the qualities of the images that indicate activity when formulas and simulations 
fail. Knowledge of the Sun's surface and ARs are critical because, at any moment, a harmful Coronal Mass Ejection 
(CME) can be released causing worldwide failure of the electric grid. Fortunately, most events correlate, so when a 
strong solar flare occurs in an active region, it is an excellent indicator that a CME will have a stronger possibility to 
release from that same region. Dr. Jie Zhang, a solar physic professor and advisor at GMU, and I have recently looked at 
the old question of can we predict solar flares from magnetogram images of the ARs using AI? We decided that using an 
ANN was the most efficient approach in the fact we would be dealing with larger datasets. We attempted to train the 
ANN with the AR images so that when the trained ANN is presented with unknown AR images, it could correctly predict 
if that region will have a solar flare within 24 hours. In a combined effort with GMU's computer science department, we 
have now matured our ANN to a Convolution Neural Network (CNN) that is optimized for image classification. CNN is 
still an ANN, but it has the added feature of convolution layers that mathematical takes into account the surrounding 
pixels as a feature of the ANN. Convolutional layers are an excellent technique used to find structures in images using 
only pixel data. Our research data is the magnetogram images from Helioseismic and Magnetic Imager (HMI) on the 
Solar Dynamic Observatory (SDO) sliced to a square region containing the full AR. Our data is from 2010 to 2014, which 
consists of around 1000 images. The images are from the last solar maximum to get a more significant distribution of 
ARs that erupted with a solar flare within 24 hrs, and this was done by connecting them with archived flare. We are now 
looking toward using object detection algorithms like YOLO (you only look once) to take the entire magnetogram image 
of Sun to detect ARs and automatically slice them to a shape the CNN can read and predict. Our end goal is the addition 
of these two powerful AI techniques to produce a program that can be used by scientists and satellites to predict the 
release of a CME on behalf of humanity. I hope to present a proof of concept that can be used to observe the Sun's 
surface, and when an AR forms, the object detector will find it, and the CNN determines if a solar flare will occur within 
24 hrs. 

The Introduction 2
In 1925 Cecilia Payne-Gaposchkin proposed her doctoral thesis that the stars are composed of mostly hydrogen and 

helium. Ever since then we have continued to learn more about our host star from the fact that is our source of life-
giving energy and also the biggest, most dangerous nuclear bomb for the next 4 light-years.

The Sun continuously produces streams of charged particles into the surrounding space, which is a reason why space 
is dangerous. When the Sun has a lot of activity in its active regions it is likely to release a solar flare and a Coronal Mass 
Ejection (CME). The CME is a concentrated pressure wave of charged particles from the sun due to actions of the surface 
and has been known to cause problems on Earth and in our solar system. A large CME hit Earth on March 9th in 1989 
causing a large geomagnetic storm shutting down some cities' power grids, like Quebec, and completely jamming 
worldwide communication channels like radio. It was reported that an X15 (very big) solar flare was reported on March 
6th just 3 days before the incident. But, this is simply a bad day compared to the ferocity of the Carrington Event on 
1859 from September 1st to the 2nd. The Carrington Event is the largest geomagnetic storm on record. Electrical grids 
were very small then, but the telegraph systems all over there world failed, and many telegraph workers reported that 
they were electrocuted at work by the event. Richard Carrington reported that a ‘white light flare’ came from the Sun 
several hours before the event. It is understood that a geomagnetic storm like the 1859 Carrington Event today would 
destroy electrical grids, cause widespread blackouts, and cost trillions of dollars. In 2012 a powerful CME, similar to the 
Carrington Event, was released but missed the Earth by nine days. In this introduction, I wanted to simply state the 
background and importance of this work which has led me to attempt to predict solar flare occurrences on the Sun. An 
accurate prediction can give us more time to be better prepared to handle it when it does.

Definitions
Active regions - Regions on the Sun's surface that have very strong magnetic fields. They have a tendency the form 
sunspots, seen as the darker region in Figure 1. Active regions sometimes come in contact with another polar opposite
active region and will produce solar phenomena like flares and CMEs.

Charged Particles - are atomic particles or ions with an electric charge. They are released by the trillions by the Sun 
producing the solar wind. They can disrupt or destroy unprotected electrical equipment.

Coronal Mass Ejection (CME) - is a significant release of plasma, charged particles, and magnetic flux from the Sun's 
surface seen in Figure 2. They are often seen to follow the appearance of solar flares, but a CME will not always that be 
released with every solar flare.

Geomagnetic Storms - are a major disturbance of Earth's magnetosphere that occurs when there is a very strong 
exchange of energy from the solar wind to Earth's atmosphere. Can be seen on Earth as Auroras in Figure 3

Solar Flare - is a sudden bright flash of light on the Sun's surface, seen as the bright spot in Figure 2. It is found primarily 
seen in active regions. A solar flare can be accompanied by a CME.

Figure 1 (Magnetogram Image of AR and Solar disc)      Figure 2 (Release of Solar Flare and CME)               Figure 3 (Aurora from Geomagnetic storms)

Kendall Johnson 
kjohns21@masonlive.gmu.edu | Youtube: MoveOverRover

George Mason University | 4400 University Drive, Fairfax, VA 22030
Goddard Space Flight Lab | 8800 Greenbelt Rd, Greenbelt, MD 20771

Discussion and Conclusion 4
Discussion 

The model performed well with a respectable model score of 92.2%, but this does not mean that the CNN can
predict the occurrence of solar flares at that efficiency. First, in discussing the convolution matrix in Figure 6 it is
easy to see that the data is completely skewed by the overwhelming higher percentage of non-solar flare making
active regions by the fully blue true positive and every other box being almost blank. For the normalized confusion
matrix seen in Figure 7, we can see the distribution of squares better, but we are also able to see the poor
classifying for active regions that will produce a solar flare from the false positive and true negative beginning
about the same color. This says that it was around a 50/50 split of the trained CNN model being able to determine
if the region that is going to have a solar flare will have a solar flare. Just from the confusion matrixes, we can say
that the CNN is good at determining that an active region won't have a solar flare, but we are likely to get quite a
lot of false positives before getting a true solar flare.

The ROC curve, in Figure 9, agrees with the result of getting very many false positives with the slope line closer
to a lower specificity on the x-axis. The ROC curve's AUC shows positive predictability with .761 that represents
moderate model performance.

All calculated predictive values, except specificity and Appleman's skill score, are very good but are taken with
the same grain of sand the great model score is. This is because the model was very good a predicting the non-flare
bearing active regions that make up more than 90% of the data. The specificity of 45% on the other hand shows
the truth of not being able to identify the flare bearing active regions results very well, and this reiterates the
runaway false positive problem above.

The Appleman's skill score was my most sought after metric to truly quantify how well my model worked. In the
2016 paper titled A COMPARISON OF FLARE FORECASTING METHODS, G.Bares et al. were able able to get a state-
of-the-art model with an Appleman's skill score of 0.19. simply meaning they were able to predict more solar flares
than not. My Appleman's skill score was -0.03, basically zero, because of the 50/50 tie between false positives and
true negatives of flare bearing active regions. This result doubles down on the fact that we will get detect a similar
amount of false positives of flare-bearing active regions as actual solar flare events.

Conclusion
In conclusion, it is no simple feat to predict solar flares. Although there were many positive results in this proof

of concept the algorithm is far from being a great predictor of the occurrences of solar flares. The two biggest
problems are that there is such a big difference in the quantity of data for each class, and the classic problem of we
need more data. The positive progress of both of these problems of both these problems, it will create a better
predictive model. But, the model we created model still has the strong ability to tell that an active region is not
going to have a solar flare. This model may not have certainty in that a possible active region may have a solar
flare, but due to the vast amounts of false positives, it will likely not miss the actual AR that will birth a solar flare.
Much like the algorithm to find fraudulent credit card activity, it is better to find the problem and be wrong about
that finding than to miss the problem entirely. One of the many false positives this trained CNN would detect could
be the real thing, and that may be the difference in readiness for a Carrington-like solar event.

.
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Methods and Results 3
The method I am using to predict a solar flare occurrence from an active region is the AI algorithm known as 

Artificial Neural Networks (ANN) and in particularly Convolutional Neural Networks (CNN). A CNN has all of the 
same functions and structures as ANNs except the addition of a convolutional layer that pools a set of incoming 
data to come up with results that take into account the values of close proximity inputs. This can be done by 
simply finding the sum or the average of pieces of the incoming inputs. CNNs are known to work very well with 
image data that is in the matrix-like form similar to pictures from a camera.

The CNN architecture I am using started with the VGG-16 architecture, seen in Figure 5, which is a very 
successful CNN algorithm used by the Visual Geometric Group out of Oxford who got a 95.2% model score on the 
very large ImageNet set of images. VGG-16 had a normal 224 x 224 input but I needed 256 x 256, so I made an 
hourglass-like residual layer structure to start the network, an example is seen in Figure 4 added to the front of 
Figure 5. I did this to strengthen the starting heat map of features and output to the smaller 224 x 224 image size 
when added to the beginning of the VGG 16 model. I also removed Max-pooling and used average pooling due to 
the way the numeric data was presented. I used the activation function ReLu for every layer but the last which I 
used the softmax function to help classify. My loss function was a simple Binary crossentropy with no reduction 
type and my optimizer was Adam with a learning rate of 0.0001, amsgrad = True, beta 1 = 0.9, beta 2 = 0.9999, and 
epsilon = 0.00001. 

Figure 4 (Hourglass ANN architecture)                                     Figure 5(VGG-16 ANN architecture)

Training the Model
The data used to train the model was 1070 images of the Sun’s active regions, like in Figure 1, with the 

dimensions of 256x256x1. The images are HMI Magnetogram, like in Figure 1, were taken from the Solar Dynamic 
Observatory (SDO) from 2010 to 2014 around the last solar maximum. There were 70 images of active regions 
that created a solar flare within 24hrs, and 1000 images of active regions that did not. I also used 22,000 epochs 
with an image batch size of 32. My goal was simply to produce a 0 meaning that no flare will be produced or a 1 
meaning that a solar flare will be released.

The Hardware that is used to train the following CNN is two NVIDIA Quadro RTX 4000 GPU for a total of almost 
5,000 Cuda cores. The software programs used the create and train the CNN architecture are TensorFlow 2 and 
Keras in python 3.7 on the Ubuntu 18.04 operating system.

From the trained CNN model I produce the visual results of a confusion matrix (Figure 6), a normalized 
confusion matrix (Figure 7), and a ROC curve (Figure 9), and for the quantitative model parameters produced are 
Sensitivity, Specificity, Precision, Negative Predictive Value, Accuracy, AUC (area under the curve), and the 
Appleman Skill Score (Equation 1). The calculations are shown in Figure 8 and the calculated values are shown in 
Table 1. I converted some to a percentage for discussion purposes. 

Figure 6 (Confusion Matrix)                   Figure 7 (Normalized Confusion Matrix) Figure 9(ROC Curve )

Figure 8 (Confusion Matrix labels and Equations)                                     Table 1 (Calculated Vales from CNN Model)

Equation 1 : 𝑨𝒑𝒑𝒍𝒆𝒎𝒂𝒏′𝒔 𝑺𝒌𝒊𝒍𝒍 𝑺𝒄𝒐𝒓𝒆 =
(𝑻𝑵+𝑻𝑷)

𝒕𝒐𝒕𝒂𝒍 𝒊𝒎𝒂𝒈𝒆𝒔 −(𝑻𝑵+𝑭𝑷)/𝒕𝒐𝒕𝒂𝒍 𝒊𝒎𝒂𝒈𝒆𝒔

𝟏−(𝑻𝑵+𝑭𝑷)/𝒕𝒐𝒕𝒂𝒍 𝒊𝒎𝒂𝒈𝒆𝒔
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Model Score 92.21%
Sensitivity 48.57%
Specificity 99.40%
Precision 85%
Negative_Preditive 96.50%
Accuracy 96.07%
Applemen Skill Score -0.03%
AUC .761

Methods and Results (continued..)  
Picking Active regions from the Sun's disc.

I attempted to make an object detection model that can detect and classify active regions on the sun, but most, if not all, of 
the activity of the Sun, will have an active region present. What I did instead is use the python module OpenCV to create a sudo-
edge detector. I used Canny edge detection, gaussian blurs, and threshold adjustments for the program to detect ARs on the 
surface against the seeming blank surface background the magnetogram produces. When an  AR is detected a bounding box is 
put around it, seen in Figure 10, and this bounding box is what will in the future slice to a specific size image and feed into the 
train CNN. I believe this only worked because of simplistic magnetogram images and would work poorly for any other solar 
image of wavelength. Figure 10 (AR detections on the Solar Disc)
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Automated Data Accountability for the Mars Science Laboratory

Brian Kahovec (393K), 
Ryan Alimo (393K), Dariush Divsalar (332B)

Data Accountability is the process of ensuring that all data sent from a spacecraft is received and processed successfully on the ground and also 
identifying where in the pipeline data becomes missing if it not received. The Mars Science Laboratory (MSL) currently relies on Ground Data Systems 
Analysts (GDSA) to determine whether or not all data has been accounted for. When data is missing, it can take several hours to determine the root 
cause of the issue. There have been previous attempts to automate the data accountability process, but they are unreliable for operational use. This 
paper presents machine learning based approaches to automate and optimize the detection of volume loss from the downlink process of telemetry data 
from the Mars Curiosity Rover.

Approach

Accuracy of Trained Models

Infusion and Explainability 

Data Collection 
A data pipeline accumulates information about each downlink at various locations in the MSL Downlink Process. We gather data from three data 
sources: MAROS, which contains metadata from one of the orbiters; TLMWeb, which contains metadata from JPL Data Control, and the MSL 
Database, which contains metadata after the downlink has been processed by GDS software. 

Signal Processing 
A signal processor combines the raw metadata from these three separate sources and computes the relevant features. Expert GDSAs evaluated 
the computed features for each transmission to label each downlink as complete or incomplete. Our labelled dataset consists of approximately 
9000 downlinks. 

Machine Learning 
With our well-labelled dataset, we trained both supervised learning models to classify each downlink as Complete or Incomplete. We also 
applied unsupervised learning techniques to identify anomalies in the data. These anomalies are equivalent to Incomplete passes labelled by the 
supervised learning algorithms. Our dataset is imbalanced; only about 10% of passes are Incomplete or anomalous, so detecting these can be 
difficult but is important for the GDSA team. 

Hyperparameter Optimization 
To further increase the accuracy of our models, we applied hyperparameter optimization while training. The Variational Autoencoder (VAE) had 
the highest recall of incomplete passes. Since our dataset is imbalanced, identifying these anomalies is more difficult and this recall is a better 
metric than overall accuracy. We chose to retrain the VAE with various hyperparameter optimization algorithms.

The MSL GDSA Report Summary Dashboard displays the status of each downlink as computed by the trained model. An 
error message explains where the data was lost.

Introduction

Mars 
Rover

Mars 
Orbiters

Deep Space Network JPL Data Control MSL Ground Data 
System

MAROS TLMWEB MSL DB

The most accurate model was delivered to the MSL GDSA team. The model was infused into their software and is used to 
perform their daily operations. When a pass is labelled as Incomplete, the GDSAs need to know why. To answer this question, we 
determine which feature is the most anomalous by computing the error of each feature. Then an error message tells the GDSA 
which feature is anomalous and and the value of the feature. This error message provides the GDSA enough information to 
respond to the issue.

Results of the trained machine learning models without hyperparameter optimization

Results of different optimization algorithms applied while training the Variational 
Autoencoder

Machine Learning 
Algorithm

Recall of 
Incomplete Passes Overall Accuracy

Adversarial Autoencoder 62% 67%

Variational Autoencoder 80% 77%

Linear Regression 38% 92%

Support Vector Machine 68% 85%

Gaussian Naïve Bayes 27% 97%

Deep Neural Network 50% 91%

Optimization 
Algorithm

Recall of 
Incomplete Passes

Overall 
Accuracy

Random Search 91% 83%

Tree Parzen Estimator 96% 87%

Hyper NOMAD 92% 85%

Delta-DOGS 94% 79%

Delta-MADS 97% 88%

During the downlink process, data is transferred from the rover to one 
of the Mars orbiters. The orbiter then sends the data to one of the 
Deep Space Network Stations. The station sends the data to the Jet 
Propulsion Laboratory, where it is received by Data Control and stored 
in the Telemetry Data System (TDS). Finally, the MSL Ground Data 
System (GDS) software processes the data from the TDS and stores it in 
the MSL Database.

MSL Downlink Process

Copyright 2021. All rights reserved.
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Publications/Code/References: https://github.com/jitinkrishnan/NASA-SE

Our goal is to develop a virtual assistant system to help and 
interact with one engineer in their daily lives, while gradually 
accumulating that specific engineer’s years of explicit and implicit 
knowledge and experience (lessons learned).

Systems 
Engineer

Personal Assistant

Information Assimilation

Ø Question-Answering
Ø Explainable System
Ø Dynamic Information
Ø Time & Scheduling
Ø Hypothetical Scenarios
Ø Capturing Experience

Ø NASA currently lacks any personal assistant systems 
that are designed do trivial information management for 
systems engineers that deals with multitude of projects 
and disciplines.

Ø Although there exists knowledge engines and ontologies 
for the Systems Engineering domain such as MBSE, 
IMCE, and OpenCaesar, generic commonsense 
acquisition from raw text is rarely discussed; we aim to 
address this challenge. 

Natural Language 
Processing

Ontology, 
Knowledge Base, 
Graphs, etc.

Our Current Goal

Documents
(Eg: SE Handbook, 

Lessons Learned, etc.)

Extract knowledge from text to 
automatically construct knowledge 
graphs.

Open Information Extraction Entities and Relations
Sentence: STI, an instrument, weighs 56 kg 

Dependency Parse Tree

Tools: Stanford OpenIE, OpenIE by AI2, NLTK, Stanford 
CoreNLP, POS Tagger

STI Instrument

56 kg

is-a
(instance-of)

weighs

Knowledge Graph (KG) Construction 
+ 

Entity Linking

Ø Concepts are Systems Engineering domain-specific 
entities. Eg: ‘Technology Readiness Level’, ‘Project
Manager’, ‘Technology Maturity’, etc.

Ø Goal: Learn how to extract such entities from text. 

Concept Recognition

Future Work: Scalable + End-to-end

Sample KG Snippet

Conclusion

Ø SEVA: A framework to assist 
Systems Engineers in their daily 
activities.

Ø Commonsense knowledge 
acquisition and retaining lesson 
learned.

Ø From raw text to KGs (Entities and-
Relations) using NLP.

Motivation

Mission

mailto:jkrishn2@gmu.edu
mailto:patrick.l.coronado@nasa.gov
https://github.com/jitinkrishnan/NASA-SE
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Emily.S.Law@jpl.nasa.gov | trek@jpl.nasa.gov
NASA Jet Propulsion Laboratory, California Institute of Technology

The portals provide easy-to-use tools for browsing, data layering and
feature search, including detailed information on the source of each
assembled data product. Interactive maps, include the ability to overlay a
growing range of data sets. They allow users to easily find and access
the geospatial products that are available. Data products can be viewed
in 2D and 3D, in VR and can be easily integrated by stacking and
blending together rendering optimal visualization. Data sets can be
plotted and compared against each other. Standard gaming and 3D
mouse controllers allow users to maneuver first-person visualizations of
flying across planetary surfaces.

The portals provide a set of advanced analysis tools that employed AI and data science methods. The tools facilitate measurement and study of terrain
including distance, height, and depth of surface features. They allow users to perform analyses such as lighting and local hazard assessments including
slope, surface roughness and crater/boulder distribution, rockfall distribution, surface electrostatic potential, line of sight calculation and optimal traverse
path determination. These tools facilitate a wide range of activities including the planning, design, development, test and operations associated with lunar
sortie missions; robotic (and potentially crewed) operations on the surface; planning tasks in the areas of landing site evaluation and selection; design and
placement of landers and other stationary assets; design of rovers and other mobile assets; developing terrain-relative navigation (TRN) capabilities;
deorbit/impact site visualization; and assessment and planning of science traverses.

Nine portals are publicly available (https://trek.nasa.gov) to explore the Moon,
Mars, Vesta, Ceres, Titan, Saturn’s Icy Moons, Mercury, Bennu and Ryugu
with more portals in development and planning stages. Contact
trek@jpl.nasa.gov with any questions or concerns.

NASA’s Solar System Treks program of lunar and planetary
mapping and modeling produces a suite of interactive
visualization and AI/data science analysis tools
(https://trek.nasa.gov). These tools enable mission planners,
planetary scientists, and engineers to access mapped data
products derived from big data returned from a wide range of
instruments aboard a variety of past and current missions, for a
growing number of planetary bodies.

The images to the left and above are
output from the crater detector and rock
detector tools, respectively, with hazard
maps to the right of the images on which
the detection algorithms were run. These
algorithms use neural networks and
traditional image processing for detection
and recognition.

The five images to 
the right are 

snippets from the 
lighting tool which 

takes a region of a 
Digital Elevation 

Model (DEM) and 
computes the 

amount of wattage 
for every pixel as 
a function of time 
with a ray tracing 

algorithm.

The image to the 
right is the result 
of calculating the 

potential static 
charge, or the 
static charge 

resulting from 
solar comic rays, 

per pixel over a 
given region of a 
Digital Elevation 

Model (DEM).

1 Eddie Arevalo, Bach Bui, George Chang, Aaron Curtis, Natalie Gallegos, Richard Kim, Emily Law, Heather Lethcoe, Shan Malhotra, Mike Rueckert, Syed Sadaqathullah, Catherine Suh, Quoc Vu
Copyright: © 2021. California Institute of Technology. Government sponsorship acknowledged.
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Data Ordering Genetic Optimization (DOGO) –
A Data-Driven Quality Estimate for Every Observation

Dr. Lukas Mandrake, Masha Liukis, Steven Lu, and James Montgomery
Jet Propulsion Laboratory, California Institute of Technology

Poster ID 41, Second AI and Data Science Workshop for Earth and Space Sciences, February 11th, 2021

Contact: lukas.mandrake@jpl.nasa.gov and you.lu@jpl.nasa.gov
© 2021. Government sponsorship acknowledged. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

1.  Quality Flags

• Space-based data sets (e.g., OCO-2, OCO-3) often 
contain quality flags.

• Guide users to find data to use for their analyses.
• Quality flags are great utility, but have drawbacks:

• One-time optimization – not customized for 
your analysis

• Assumes data is good or bad – data quality is 
not Yes/No; throw away too much data

2.  Instead of Flags, Order the Data

4. Results - Warn Levels

• No good or bad decisions, cutoffs, and lost data
• User specifies how much data from best to worst
• Tunable filter specific for every analysis
• Specify filtration strategy by a single threshold value
• Reproducible results, more comparable findings

Most 
Data

3.  Data Driven – Data Ordering Genetic Optimization

Turn the objections into statistical metrics to optimize
• Minimize  MEAN(MONTHLY(STDEV(CO2))) in south
• Minimize MEAN(STDEV(CO2)) at small spatial scales
• Minimize RMS(CO2 – ground_truth_CO2)

Direct 
Differencing

RMS ( OCO-2 CO2

– Ground Truth )

Small Areas
STD ( CO2

within area )

Southern Hemisphere
STD ( CO2 in south )

Gene = Data Quality Flag

• Define the gene
• Judge the gene
• Gene metrics

Genetic Optimization

Score
Children

Complexity
Transparency
Error Metric

Propagate New Genes
Pick Parent(s)

Mutate many children

Keep
Dominant

Genes
Best genes persist
Become parents

1000’s of genes
per node,

1000’s of nodes

• Optimize a function
• Large compute resources
• Handle poorly behaved 

data that may be noisy

5. Future Work

6. Acknowledgement

The authors want to thank the OCO-2 & OCO-3 missions and Multi-
Mission Ground System and Services (MGSS) for the continuous 
support of DOGO development.

Every Observation Gets Its Judgement
• DOGO produces optimal quality flags for every 10% 

data accepted
• Each observation is examined: how many quality 

flags would reject it? 0 rejection => Warn Level 0
• Warn Levels are officially delivered to OCO-2 & 

OCO-3 user community
• Warn Levels are explainable 

• Expand DOGO to support more missions
• Simplify DOGO interface for easy use 
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Content-based Classification of Mars Imagery for the PDS Image Atlas
Steven Lu1, Kiri Wagstaff1, Emily Dunkel1, Kevin Grimes1, Brandon Zhao2, Jesse Cai3, Shoshanna B. Cole4,

Gary Doran1, Raymond Francis1, Jake Lee1, and Lukas Mandrake1
1Jet Propulsion Laboratory, California Institute of Technology, 2Duke University, 3California Institute of Technology, 4Space Science Institute 

NASA Deployment
• Classified 1.1M images
• Access via PDS Image Atlas: 

https://pds-imaging.jpl.nasa.gov/search/

(1) Select class of interest

(2) Select from matches (3) Classified content
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Increasing usage over time

HiRISE Orbital Images MSL Rover Images

Next Steps
1. Characterize use cases for further 

Image Atlas improvements
2. Use tree-based multi-label learning 

approach to improve the 
performance of minority classes for 
MER classifier

3. Use label shift adaptation to adapt to 
new environments for MSL classifier

4. Create a classifier for Lunar 
Reconnaissance Orbiter (LRO)

Calibration Test Acc. (0.9 thresh.) Calibration Error

Before 94% 0.056

After 97% 0.022

Calibration Test Acc. (0.9 thresh.) Calibration Error 

Before 87% 0.142

After 90% 0.080

1. Train machine learning 
classifiers to recognize 
image content

2. Classifier calibration for 
reliable posterior 
probabilities

3. Enable users to search millions
of Mars images for content of
interest

4. Deploy classifiers at the NASA
Planetary Data System archive

Contributions
Earth images

transfer

Data: https://doi.org/10.5281/zenodo.4002935 

• Eight classes (e.g., 
crater, slope streak, etc.)

• Dynamic landmarking
• 10K labeled images
• Transfer learning

• 19 classes (e.g. float rock)
• 3K labeled images
• Transfer learning
• Active learning 

experiments

Data: https://doi.org/10.5281/zenodo.4033453   

MER Rover Images
• 25 classes
• 3K labeled images
• Multi-label transfer 

learning
• Classifier chain

Data: https://doi.org/10.5281/zenodo.4302760

Calibration Avg. Prec. 
(0.9 thresh.)

Avg. Recall 
(0.9 thresh.)

Avg. 
ECE

Before 89% 53% 0.031

After 95% 45% 0.015

Poster ID 42
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Auto-Calibration and High-Fidelity Virtual Observations of Remote Sensing 
Solar Telescopes with Deep Learning

Valentina Salvatelli (1,2), Brad Neuberg (1,2), Luiz F. G. dos Santos (3,4), Souvik Bose (5, 6), Mark Cheung (7), Miho Janvier (8), Meng Jin (2,7), Yarin Gal (9), Atılım Güneş Baydin (9, 10)
(1) Frontier Development Lab, (2) SETI Institute, (3) The Catholic University of America, (4) NASA - Goddard Space Flight Center, (5) Rosseland Center for Solar Physics, University of Oslo, (6) Institute of Theoretical Astrophysics, University of Oslo, (7) Lockheed Martin Solar & Astrophysics Laboratory (LMSAL), 

(8) Universite Paris-Saclay, CNRS, Institut d'astrophysique spatiale, (9) Department of Computer Science, University of Oxford, (10)  Department of Engineering Science, University of Oxford

BACKGROUND
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○
○
○

○
○

DATA

APPLICATIONS
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[1] William Pesnell, Barbara Thompson, and Phillip Chamberlin. The Solar Dynamics Observatory. solphys, 275:3–15, 11 2012.  [2] J. R. Lemen et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275:17–40, January 2012. 
[3] Richard Galvez & al. A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission. The Astrophysical Journal Supplement Series, 242(1):7, May 2019. [4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. LNCS. 9351. 234-241. 10.1007/978-3-319-24574-4_28, May 2015. [5] 
Zhou Wang et al. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions On Image Processing, 13(4):600–612, 2004. [6] Valentina Salvatelli, Souvik Bose, Brad Neuberg, Luiz F. G. dos Santos  et al. Using U-Nets to Create High-Fidelity Virtual Observations of the Solar Corona, NeurIPS 2019 Workshop ML4PS, arXiv:1911.04006 [7] Luiz F. G. 
dos Santos, Souvik Bose, Valentina Salvatelli, Brad Neuberg et al. Multi-Channel Auto-Calibration for the Atmospheric Imaging Assembly using Machine Learning  arXiv:2012.14023, to appear on A&A.
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Architecture: U-Net 

Synthesis of Virtual Observations (B)Auto-calibration of the CCD sensitivity (A)
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later resynthesis.

RESULTS [6]

★ Enabling future HSO missions to auto-calibrate their EUV instruments without using sounding rockets.
★ Enabling Sun observatories from vantage points in deep-space (where sounding rocket calibration is not an option)

APPLICATIONS

RMSE + Structural Similarity [5] 
is used to evaluate the fidelity 
of the synthetic image

RESULTS [7]

COMMON 
IDEA

(continuous

CNN - SINGLE INPUT CHANNEL

CNN - MULTIPLE INPUT CHANNEL

https://arxiv.org/search/astro-ph?searchtype=author&query=Salvatelli%2C+V
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https://arxiv.org/search/astro-ph?searchtype=author&query=Gal%2C+Y
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Compressed Image Artifact Removal:
Improving Instrument Data Quality After Lossy Compression

Daniel da Silva1,2, Alex Barrie1,3, Barbara Thompson1, Ayris Narock1,4, Michael Kirk1,5

1 – NASA/GSFC,  2 – Universities Space Research Association, 3 – Aurora Engineering, 4 – Adnet Systems, Inc, 5 – ASTRA, Inc
daniel.e.dasilva@nasa.gov - alexander.c.barrie@nasa.gov - barbara.j.thompson@nasa.gov

ayris.a.narock@nasa.gov - michael.s.kirk@nasa.gov

Support for research and engineering done for this work came from the MMS and STEREO missions. For full text open-access publication on the MMS/FPI instrument compression artifact 

removal, see: https://doi.org/10.1029/2019JA027181

Background
Satellite instruments are collecting more data then ever 

before, outpacing advances in the telemetry infrastructure 

that enable their transmission.

A common trade-off in missions is choosing to trade 

data quality for increased downlink volume. Two 

methods of doing this are decreasing temporal / spatial / 

spectral resolution, and lossy compression.

Lossy compression is dangerous, but image quality 

is extensively studied in computer vision / AI. 

Specifically, around the following tasks:

- Denoising

- Flagging Image Quality

- Inpainting and object removal

Using supervised learning and a set of before/after 

training examples of the compression effect, models can be 

trained to remove the compression artifacts and noise in 

general. 

Often, a training dataset is available through dual 

downlink of paired high-quality and lossy-quality data. 

In practice, one must wait for the mission to collect enough 

data.

Instrument Case Study (MMS/FPI)
Particle instrument that during beginning of mission had 

lossy quality issues. Later-on it  operated for period with 

no issues: this allowed us to created side-by-side 

training dataset of compressing effect.

Designed, trained and tested neural network to 

correct compression noise.  Before/after results below.

We used a multi-layer perceptron neural 

network operating on patches (tiles) of the image. To 

support the scientific community, we provided an 

interpretation of the reconstruction using basis functions 

theory.

Next Steps
We plan to start designing other improvement 

pipelines, starting with STEREO’s operational space 

weather imagers EUVI and COR2.

Though at lower time resolution, versions of these 

images without quality issues are available to create a 

training set.

This task, aiming to repair imagery rather particle data, 

has many more dimensions and different types of 

compression noise.

Having high-quality, high-resolution solar imagery 

will boost the national space weather forecasting 

capability, leading the path for other applications.

Lossy compression 
introduces artifacts in 
outer areas of solar 
image

Electron 

Density 

(Lossy/True)

Electron Density

(Corrected/True)

Electron 

Temperature 

(Lossy/True)

Electron 

Temperature

(Corrected/True)
Data 

Source
On-board 

Compression

Ground 

Decompression
Satellite 

Transmitter

Ground 

ReceiverDownlink

NASA AI 

Conference 2021 

Session 3: Mission 

Operations, 

Engineering, and 

Cross-Cutting 

Capabilities
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Best practices in sharing enhanced data products and 
machine learning algorithms: learnings from NASA Frontier 

Development Lab
James Parr, Madhulika Guhathakurtha, Bill Diamond

BACKGROUND

AI Ready Data

Advantages of AI

ARTIFICIAL INTELLIGENCE 
RESEARCH FOR SPACE 
SCIENCE, EXPLORATION 
AND ALL HUMANKIND

 http://fdl.ai ML algorithms are great at finding  ‘features’ in data and 
using them to make predictions. However, they can also be 
misled by flaws. 

ML systems also have the power to fuse vast amounts of data 
into multi-dimensional stacks, and automatically decide which 
features are most important to the science.

Automatic Swath Filler

AI-ready data

Common language and 
quality standards

A validated framework 
of MLOps tools

ML systems can be rigid in how they accept data, which 
must be transformed into the right format. Supervised ML 
also requires labelled data with balanced properties.

WorldFloods

Common Standards
We have collaborated on 
a new ‘ML Technology 
Readiness Level’ that 
encourages development 
of robust, reliable and 
responsible ML systems. 

ML techniques like ‘super-resolution’ can encode prior knowledge 
of physics or data properties and use these to make predictions 
from sparse or incomplete data

The Moon for 
Good

ML-Enhanced SDO
Upscaled (super resolution) of 
the solar magnetic field to create 
40 years of data at contemporary 
resolutions. 

MLOps and Open, Reproducible Science

Scientific culture is moving to expose all steps in the investigation 
process - conception, investigation, experiment and reporting. 
We are developing a platform that supports these ‘open science’ 
goals to share data, algorithms, code and documentation.

The SpaceML.org  platform is offered as a repository of all FDL 
outputs, and as a resource to the scientific and ML community.

Advances in computing and machine learning (ML) are 
revolutionizing how we do science, opening up avenues of 
research that would have been impossible a few years ago. 
However ...

The opportunity cost to apply machine learning effectively can 
be high. ‘Garbage in, garbage out” applies equally ML and, if 
applied blindly, complex ML workflows can seriously 
exacerbate flaws in data. Finally, ML is sometimes regarded as 
a ‘dark art’ by non-practitioners and explaining why ML works 
can be difficult. 
However ...

During five years of FDL, we have learned the formula to 
overcome these problems:
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FRONTIER DEVELOPMENT LAB 2018: ASTROBIOLOGY TEAM 2

From Biohints to Confirmed Evidence of Life: 
Possible Metabolisms Within Extraterrestrial 
Environmental Substrates 

Uh, Houston, we need data!
3 million synthetic planetary spectra were generated 
using PSG (Planetary Spectrum Generator3, courtesy of 
Geronimo Villanueva at NASA Goddard) and compute 
resources supplied by Google Cloud. 

High resolution spectra were generated over a range of 
stellar and planetary parameters (28 total) to maximize 
the diversity of the produced dataset for machine 
learning and release to the scientific community. 

Proof of Concept: 
Synthetic Spectra Input

INARA: Intelligent exoplaNet Atmospheric RetrievAlWe use sophisticated telescopes that 
record information about a planet’s 
temperature, tilt, rotation, and atmosphere, 
along with other stellar and planetary 
parameters. From these parameters we are 
able to look for biohints1,2.

We want to know what molecules are in the atmosphere of an exoplanet.
Knowing this can help us determine whether or not life may exist on an exoplanet. This 

is because certain combinations of molecules are indicative of life1,2.

What we are able to observe is complicated.
Telescopes record emissions from molecules in a planet’s atmosphere at different wavelengths. 
This results in a complicated planetary spectrum, which we then have to deconvolve into potential 
atmospheric molecular components. This process (called an atmospheric retrieval) is very 
time-consuming and computationally expensive!

Can we use machine learning to expedite the speed and accuracy of determining 
the   composition of exoplanetary atmospheres?

Biohints may be molecules, 
patterns or other signals that 
are known to be indicators of 
biological activity 

Planetary Spectrum Components
(what we have to deduce)

H2O (water)

CH4 (methane)

Planetary Spectrum 
(what we observe at high resolution)

wavelengt
h

How do we determine if life exists on exoplanets?

Set Current    Future

Training 100,000 2.5 
million

Validation 10,000 400,000

Test 7,710 200,000

Comparison
Method Time Molecules retrieved
Traditional Hours to days User-specified

ExoGAN4 Minutes H2O, CO, CO2, CH4

HELA5 Seconds H2O, HCN, C2H2

INARA Seconds H2O, CO, CO2, CH4, C2H6, O2, O3, N2, N2O, NO2, NH3, SO2

Error H2O CO2 O2 N2 CH4

MSE 3.43e-4 1.02e-2 7.00e-3 2.05e-2 1.93e-4

± 2σ 2.28e-3 3.53e-2 2.59e-2 5.21e-2 1.07e-3

Machine Learning Models
We explored many model architectures ranging 
in complexity from linear regression and 
feed-forward neural networks to convolutional 
neural networks (CNNs). We present results 
from the best performing model, a 1D CNN 
with the following configuration: Conv1d(64) - 
tanh - MaxPool - Conv1d(64) - relu - MaxPool - 
Conv1d(128) - relu - MaxPool - Conv1d(256) - 
relu - FC(256) - relu - FC(12) - T. Loss(0.42) - V. 
Loss (0.49) - 64 epochs.

Loss plot for the chosen CNN

True vs CNN predicted values 

~2000 VMs in Google Cloud running INARA/PSG 

Posterior distributions of the relative molecular abundances for one planet (600 predictions for each molecule). 
Within each scatter plot, each plot is a single regression in the CNN. The straight lines indicate the median values 
and the star indicates the true value (right: high level overview - left: zoomed in scale)

INARA 

PSG 

Number of epochs
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Frank Soboczenski3, Michael D. Himes1, Molly D. O’Beirne2, Simòné Zorzan4, Atılım Güneş Baydin5, 
Adam Cobb5, Yarin Gal, Massimo Mascaro, Daniel Angerhausen7, Geronimo Villanueva, 
Shawn D. Domagal-Goldman6 and Giada N. Arney6



Generating AI-synthetic biosensor data for future 
deep space missions

Researchers: Brian Wang, Eleni Antoniadou, David Belo, Krittika D’Silva
Mentors: Annie Martin, Brian Russell, Graham Mackintosh, Tianna Shaw and Frank Soboczenski 

The Effects of Radiation and 
Microgravity on Astronauts Our Model Architecture

•
•
•

•

•

Datasets Utilized

•
•

•

•

•

•

•

Preliminary Validation

Results

Conclusion: By incorporating the style of a wearable device and the content of a 
pathology, our model can synthesize symptomatic health care data for astronauts.



Digital Transformation AI & ML Overview
Edward McLarney, Poster 49 

Context:
• NASA has formed a Digital Transformation (DT) Strategy and Roadmap, led by the Office of Chief Technologist and Office of Chief 

Information Officer. This strategy includes AI/ML as one of six key strategic thrusts.
• NASA has a rich history of applying artificial intelligence (AI) to our hardest problems, such as autonomous behaviors in Mars rovers, 

deep analysis of space suit data, or image analysis to understand material strength. With the advent of powerful, plentiful, and 
affordable AI in business and industry, NASA is crafting a strategy to use AI as an accelerant for all NASA missions and business functions.

Strategy: As part of NASA’s overall Digital Transformation, NASA's AI strategy includes:
• Apply: Solve relevant mission and mission support problems via AI / ML.
• Teamwork: Lead and synchronize NASA AI/ML via an open Agency AI / ML community.
• Reskill: Expand AI training, education, hiring, and retention across the workforce.
• Tools: Assess, recommend, and establish AI / ML platforms for NASA-wide adoption.
• Data: AI-enabled! Establish secure, authoritative access to the right data.
• Outreach: Make selected data and problems available for public / partner AI / ML work.
• Adapt: Leverage industry AI / ML work and adapt it to NASA use rather than reinventing.
• Scale: Plan to promote selected AI / ML capabilities from pilot to production operations.

The AI/ML team is from across the Agency with over 50 active members; additional contributors are always welcome.

Contact:
Ed McLarney (edward.l.mclarney@nasa.gov), Nikunj Oza (nikunj.c.oza@nasa.gov)

mailto:edward.l.mclarney@nasa.gov
mailto:nikunj.c.oza@nasa.gov
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