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Change Signatures:

Reconstruction error over time for forest fire in NIR and SWIR

Introduction:

Time-series (at k in band b) decreases due to change 

Time-series (at k in band b) increases due to change 

- Unique signature of each event from deviations
- extension to more regions, hyperspectral data

Change Detection:

Conclusion and Future Work:

Interpretability of  Reconstruction Errors:

Similarity 
with NDVI:
- Increase in 
band 1 (Red)
- Decrease in 
band 2 (NIR)

References:

- Satellite image time-series for monitoring Earth 
system change (land surface reflectance) 
- Harmonic models for sequentially extracting 
seasonal parameters with Particle Filtering
- state vector: 𝒙!,# = 𝜇!,# , 𝛼!,# , 𝜑!,# , 𝜔!,# (mean, 
amplitude, phase, frequency at k in band b)
- Multispectral behavior at change point

Dataset: MODIS land surface reflectance (7 
bands, 8 days, 500 m)
Pixel time-series of regions over 16 years
Change Events: forest fire, drought, flood 
(coastal wetland, agricultural area), coastal 
land gain
Training: pre-change spectra of land surface 
reflectance time series across all bands to 
learn expected spectral reflectance model 
using autoencoders

𝒙!",$ − 𝒙",$ > 0

𝒙!",$ − 𝒙",$ < 0

Sequentially 
Estimated 
reflectance: (𝒙!,#)
Reconstructed 
reflectance: (𝒙$!,#)

Methodology:

1. S. Chakraborty, et al. "Time-varying modeling of land cover 
change dynamics due to forest fires." IEEE JSTARS, 11.6 (2018).
2. S.Chakraborty, A.Papandreou-Suppappola, P.R.Christensen,
"Class Separability of Land Cover Change Events from Multispectral 
Satellite Image Time-Series." AGUFM 2019: IN43A-05.

Clustering:
- grouping spectral deviation 
- v-measure: 0.8814Uniqueness 
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Prediction of Global Geomagnetic Fied Disturbances using Recurrent Neural Network

Hyunju Connor (hkconnor@Alaska.edu)1, Shishar Priyadarshi1, Matthew Blandin1, and Amy Keesee2
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Multi-variate LSTM Model for dB/dt Prediction

MAGICIAN Team for Forecasting GICs

Other MAGICIAN Team Activities

Summary

§ We developed a prototype of a multi-variate LSTM model using 2 years of OMNI and SuperMAG data. 
§ The prototype model catches over 100nT/min of dB/dt relatively well on 09 Mar 2012 geomagnetic storm.
§ Once matured, this model can provide an advanced warning of GICs that are typically triggered by large dB/dt.
§ In addition to the ML-GIC models, MAGICIAN team provides the low-cost, research-capable magnetometer arrays in AK and NH, 

and the GIC measurements in AK to the space science community.

This work is supported by NSF EPSCoR Grant #1920965.

mailto:hkconnor@Alaska.edu


● Mask R-CNN: Instance segmentation (individual rocks)
● Faster R-CNN with large number of Regions of Interest: 

up to 200 rocks in an input image 
● Pyramid Feature Network: rock size varies largely in an 

input image (major-axis length: 0.2 ~ 3.6 meters)

Deep neural network architecture

Input channel representations

RGB 
Orthomosaic 
tiles

Colormaps of 
digital elevation 
model (DEM)

Relative 
elevation

• Transfer learning > no transfer learning
• RGB + DEM3/DEM1 > RGB
• DEM1 alone is not enough due to bushes
• RGB + RE + NIR > RGB
• RGB + RG + NIR + DEM3/DEM1 have 

the best performance
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Simple impulsive terrain 
motion of 2 meters

terrain motion

-

Planetary scale crater mapping 

Data-driven rock geomorphology with UAS
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Summary

● Build upon robotic sampling, 
cloud, and machine learning. 

● Leverage Bayesian optimization 
for metalearning, to guide 
annotation, model retraining, 
and large scale inference. 

● AI assisted annotation and 
model retraining, lifelong 
learning with experts in the loop.

Meta-learning
Quality 
controlled 
annotations

Mission 
planning and 
Monte Carlo 
simulations 
in OpenUAV

Annotation and analytics with DeepGIS

Zhiang Chen, Tyler R. Scott, Ethan Duncan, Harish Anand, A.L.G. Prasad, Sarah Bearman, Devin Keating, Chelsea Scott, Brent Hayashi, 
Mark Wronkiewicz, Jnaneshwar Das, Ramon Arrowsmith

The Annotation Game: Towards Collaborative Science with Humans, Robots, and AI

Large scale inference on Google 
Cloud Platform

Prediction results 
with trained model

OpenUAV simulation 
testbed

DeepGIS decision 
support system

data

models

domain 
experts

plan and 
policies
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Terrain relative navigation for UAS through trajectory optimization Fragile geologic feature, trajectory analysisRock particles can be placed and manipulated in mapped terrain
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1. Introduction and Objectives

• The main objective of this project was to assess the viability of
convolutional neural network-based image classifier architectures to
automatically detect flooded areas in polarimetric radar imagery collected
by the NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) instrument. UAVSAR is a fully polarimetric L-band synthetic
aperture radar, flown aboard a NASA Gulfstream III aircraft (see Figure 1).

• The objectives of our project were as follows:
1. Build a sizable data set of matched UAVSAR imagery and flood

masks, to use as training and testing data for the machine learning
algorithms. We are using UAVSAR data collected after Hurricane
Harvey for this purpose.

2. Train two pixelwise predictors, U-Net and SegNet (both
established convolutional neural network architectures) using the
flood labels from objective #1, and evaluate the pixelwise
prediction accuracy of each candidate model on blind validation
data.

4. Results and Discussion

Automatic Per-Pixel Classification of UAVSAR Imagery for 
Hurricane Flood Detection 

Second AI and Data Science Workshop for Earth and Space Sciences, February 9-11, 2021
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Fig. 1.  UAVSAR mounted on a NASA Gulfstream III aircraft.  The 
UAVSAR radar pod is mounted under the body of the aircraft.

5. Conclusions and Future Work

• We demonstrated potential of CNN-based image classifiers for classification
of flooded areas in UAVSAR data. With U-Net, 87% overall accuracy using
manually labelled testing data, and 82% overall accuracy (outside of urban areas)
when validated using NOAA aerial imagery (0.65 Kappa coefficient).

• Future Work: Apply trained classifiers to Hurricane Florence data (see Figure 5)
to test transferability of trained classifiers to other study areas and assess classifier
accuracy. Collect more training and testing data, particularly in urban
environments, which is a current limitation of this approach. Test other input to
classifiers, and increased patch size.

2. Automated Flood Mapping Techniques

• There are pre-existing methods for detecting flooding in UAVSAR imagery
based on manual interpretation (time-consuming), or simple decision tree or
thresholding (low accuracy). However, we believed these methods were
likely to be outperformed by more modern image classification approaches,
including convolutional neural networks.

• Convolutional neural network architectures such as fully-convolutional-
networks and encoder-decoder networks, as shown in Figure 2, immediately
lend themselves to our per-pixel labeling effort. These networks utilize only
convolutional and other spatial feature-preserving layers throughout the
architecture in order to capture discriminative spatial patterns represented in
the input images associated with the pixelwise labels.

• We tested two well-known architectures from the literature, SegNet and U-
Net, and compared the results to a pre-existing decision tree classifier used
as a baseline.

Ronneberger et al., “U-Net: Convolutional Networks for 
Biomedical Image Segmentation,” MICCAI 2015, 
https://arxiv.org/abs/1505.04597

Encoder

Decoder

Feature transfers
to help decoder

Fig. 2.  Illustration of the U-Net architecture, from Ronneberget et al., 
“U-Net: Convolutional Networks for Biomedical Image 
Segmentation,” MICCAI 2015, https://arxiv.org/abs/1505.04597

3. Manual Labelling of Flooded UAVSAR Data

• We developed a simple labelling tool which shows the user an image segment
from the UAVSAR imagery, alongside various reference data to aid in
determining the appropriate label. The user can click the button corresponding to
the desired label for that segment, and the tool will then prompt the user with the
next segment. An example is shown in Figure 3.

• We labelled 10873 total image segments (covering over 3.5 million UAVSAR
image pixels). After manual labelling, we extracted 40000 randomly located,
overlapping 64x64 pixel image patches from two flight lines to use for training.
300 randomly located, non-overlapping patches were extracted for
testing/validation and kept separate from the training set.

Fig. 3.  Example of the UAVSAR manual flood labelling tool, for a flooded forest area.

Fig. 5.  UAVSAR data (left) and map of predicted classes (right) when applying the 
Hurricane Harvey trained U-Net classifier to UAVSAR data from Hurricane Florence.  The 
end goal is to have a trained classifier ready to go that can be applied to data from future 
hurricanes.

Fig. 4.  Map of the study area affected by Hurricane Harvey, showing the U-Net predicted 
classes generated from the UAVSAR data as input.  The dashed black boxes show the 
UAVSAR flight lines used to collect training data.  The black circles show points used to 
validate the map using NOAA aerial imagery.

• We generated predicted maps of flooded and non-flooded areas
for UAVSAR data collected over the Texas Gulf Coast during
flooding caused by Hurricane Harvey in August 31 - September
1, 2017, as shown in Figure 4.

• We assessed the classifier accuracy using manually labelled testing
data held out from training, as well as NOAA aerial imagery (used
for validation manually at specific points shown in Figure 4 as
black circles, limited by the cloud-free coverage of the imagery).
While the map shows five different classes, for the purposes of
assessing the classifier accuracy, we broke the results down into
only two classes, flooded (containing open water and flooded
vegetation) and non-flooded (containing all other classes).

• The overall accuracy of our U-Net classifier on the manually
labelled testing data was 87%, with 85% accuracy for our SegNet
classifier. The Kappa coefficient of U-Net was 0.73, with F1 score
for the non-flooded class of 0.89 and F1 score for the flooded class
of 0.84. SegNet had similar but slightly lower accuracies than U-
Net. The baseline classifier (decision tree method) had overall
accuracy of 75%, with Kappa coefficient of 0.48, non-flooded F1
score of 0.81, and flooded F1 score of 0.66. Both U-Net and
SegNet outperformed the baseline classifier.

• Using the NOAA aerial imagery, U-Net had overall accuracy of
82%, with Kappa coefficient of 0.65. SegNet had similar but
slightly lower accuracy (by ~2%). None of the classifiers are able
to accurately identify flooding in urban areas, however, which is an
area of future work (to collect more training data in these spatially
complex, heterogeneous environments).
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Introduction
Machine learning has achieved “human-level”
intelligence in tasks ranging from object
recognition and speech recognition to mastering
the game of Go. However, Earth scientists have
yet to fully take advantage of deep learning’s
potential. The biggest obstacles are lack of
expertise, the high barrier to entry for existing
deep learning toolkits, and the intensive
computational and data requirements. We are
addressing these challenges with DELTA (Deep
Earth Learning, Training, and Analysis), a toolkit
for Earth scientists and commercial analysts to
easily apply deep learning to their own problems.

Users only need to provide labeled training data
for their problems. DELTA pre-learns useful
features for the satellite data sources we are
targeting – WorldView, Landsat, and Sentinel-1 --
through large volumes of data on the NASA
Pleiades supercomputer. The learned features
serve as a starting point to solve users’ specific
problems, which can be shared among
researchers, amortizing data and computation
costs. DELTA then builds task-specific classification
networks on top of the learned representations.

We are applying DELTA to mapping flood
inundation extent. DELTA will accelerate Earth
science research by placing the power of deep
learning in the hands of any researcher, achieving
“human-level” intelligence in diverse classification
tasks which are currently solved manually or with
less capable automatic classifiers, drastically
expanding the spatial and temporal scales on
which many remote sensing problems can be
studied.

Results
We have tested our system on Worldview images
collected from different flooding events over the past 15
years. Training data was manually annotated by our USGS
team members. We trained on 80 images and tested on
20 hold-out images.

DELTA
• Uses autoencoders to learn features to transform raw satellite data into an
informative representation.
• Learns task-specific networks from users' training data, building on the pre-
learned features.
• Provides tools for data labeling and visualization of data, natively handles
Geotif images.

DELTA is open source and available at https://github.com/nasa/delta

Acknowledgements
DELTA is a collaboration with the USGS and is
funded by the NGA. We also thank our prior
collaborators at Google and the USGS in the
projects which led to DELTA, especially Josh Livni,
Pete Giencke, Marie Peppler, and Brenda Jones.

For more information on our previous flood
mapping work, see: Automatic Boosted Flood
Mapping from Satellite Data. Brian Coltin, Scott
McMichael, Trey Smith, and Terrence Fong.
International Journal of Remote Sensing, 2016.

Autoencoder: Learn compressed, informative image representation. Different feature 
sets are learned for our different target satellites, WorldView, LandSat, and Sentinel-1.

Left: Input World View flood image (false 
colour). Right: Flood map predicted by DELTA

DELTA takes scientists' data and produces a trained neural 
network. To classify images delta uses the learned network to 
label new data as part of a larger data processing pipeline.

Class Recall Precision

Water > 99% ~83%

No Water ~80% ~98%

mailto:brian.coltin@nasa.gov
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Improve Hurricane Intensity Forecast by Machine Learning 
of NASA Satellite Data

Objective:
Employ machine learning (ML) techniques and apply NASA satellite 
observations to improve tropical cyclone (TC) intensity forecast, especially 
rapid intensification (RI) forecast

Motivation: 
• TC intensity forecast has been a challenge for decades
• RI, defined as hurricane maximum sustained wind speed change greater 

than 30 knots within 24 hours, is particularly difficult to predict. Improving 
RI forecast accuracy is the top priority of the National Hurricane Center 
(NHC).

• The NHC's probability of detection (POD) for RI in the Atlantic basin is 
< 40% and the false alarm ratio (FAR) is > 60% (Kaplan et al. 2015).

Approach:

Identifying New Predictors for RI Building a Machine Learning Model

Fig. 1. Composite maps of TRMM precipitation rate in 
storm-centered coordinate for four TC intensity and 
four TC Intensification rate groups. 

Fig. 3. Composite ice water content profiles in 
storm-centered coordinate for four TC intensity 
and three TC intensification rate groups. 

Fig. 2. (a) Composite inner-core precipitation rate as a 
function of TC intensity for four intensification groups. (b) TC 
future 24-hr intensity change (DV24) as a function of surplus 
precipitation for all TCs and three TC intensity groups. 

Fig. 5. Predictive skill for RI in North Atlantic (top) and Eastern North 
Pacific (bottom) for three RI thresholds (DV24 ≥ 25, 30 and 35 kt). (a) 
and (d) the Peirce Skill Score (PSS), (b) and (e) POD, (c) and (f) FAR. 
The grey bars are the operational RI consensus forecast scores and 
the blue (red) bars are the machine learning model using the SHIPS 
RII predictors without (with) the surplus precipitation from TRMM. 

Fig. 6. The forecast scores for RI using the SHIPS RII predictors only, 
and with the addition of TRMM precipitation (P), MERRA-2 ice water 
path (IWP) and 100 hPa temperature (T100) as predictors. The grey 
bars represent the NHC operational RI consensus results. 

Hui Su1, Longtao Wu1, Raksha Pai2, Alex Liu3, Peyman Tavallali1, Albert J. Zhai4, 
Jonathan H. Jiang1, Mark DeMaria5

1JPL/Caltech, 2IBM, 3RMDS Lab, 4Caltech, 5NHC/NOAA
Contact: Hui.Su@jpl.nasa.gov

1. Augment predictors for RI
2. Employ machine learning 

Conclusions: 
• Tropical cyclone intensity change is approximately linearly correlated with surplus inner-core precipitation, ice water path and outflow temperature.
• The JPL-ML model significantly outperforms the NHC operational RI consensus forecast results. Our probability of detection for RI in the Atlantic is 40%, 60% 

and 200% higher than the NHC operational model while the false alarm ratio is only 4%, 7% and 6% higher for 25-, 30- and 35-kt RI thresholds, respectively. 

TC Intensification Rate

TC
 In

te
ns

ity

q North Atlantic Basin
o Training:  2680 cases (1998-2008), Test: 1228 cases (2009-2014)

q Eastern North Pacific Basin 
o Training:  2428 cases (1998-2008), Test: 1349 cases (2009-2014)

Fig. 4. Composite outflow temperature in storm-
centered coordinate for four TC intensity and four 
TC intensification rate groups. 

v Inner-core TC precipitation rate, ice 
water content and outflow 
temperature bear simple relations 
with TC intensity change and thus 
can serve as predictors for RI.

References:
Su, H., Wu, L., Jiang, J. H., Pai, R., Liu, A., Zhai, A. J., et al., Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning. 
Geophysical Research Letters, 47, e2020GL089102, http://dx.doi.org/10.1029/2020GL089102 (2020). 
Kaplan, J. et al., Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models, Weather Forecast. 30 1374–96, 
https:// doi.org/10.1175/WAF-D-15-0032.1 (2015).
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As part of the DARPA D3M program, JPL is curating a library of
ML/DL “primitives” (algorithms) with sufficient metadata and
hyperparameter tuning hints to enable auto-assembly (in Python)
of pipeline steps. These steps include preprocessing, feature
extraction & selection, tuning an ensemble of models, ranking
models using a metric, etc. The library contains 90+ classic ML
algorithms from scikit-learn, pre-trained deep learning (DL) nets
from Keras & PyTorch, and a set of advanced primitives from the
D3M performer teams. JPL’s MARVIN tools provide an environment
to annotate, discover, install, compose, and execute ML/DL
primitives and pipelines. Pipelines and metadata are specified in a
declarative manner using a community-defined JSON schema and
taxonomy. MARVIN automates the creation of Docker containers
containing the primitives and software dependencies, which are
executed on a Kubernetes cluster either on premise or at any Cloud
vendor supporting Kubernetes. D3M is designed to solve 15+
problem types:

• Classification, Regression, Clustering
• Image classification, object recognition
• Graph clustering/matching, Recommendations, Links
• Audio segmentation, video processing
• Time-series forecasting etc.

Abstract

Automated Machine Learning (AutoML) as a Service for 
the Earth Sciences

Technical Lead:  Brian Wilson
Co-Is:  Alice Yepremyan, Diego Martinez, Sami Sahnoune, Edwin Goh,

Sujen Shah, Kai Pak, Santiago Lombeyda, Chris Mattmann, and Wayne Burke
Jet Propulsion Laboratory / California Institute of Technology

ACKNOWLEDGEMENTS: This work was funded under the DARPA D3M program.

Exploring the library of ML algorithms, datasets/problems, pipelines

Future Work
• Inject Earth science remote sensing problems -- “phenomena recognition”, anomaly detection 

and time-series forecasting problems -- into the D3M program.
• Soliciting datasets and problems.
• Enable Meta-learning across 10M+ solution pipelines to be used for future model selection.
• GUI’s for domain experts:  einblick.ai,  Harvard Two Ravens, AutoML from Jupyter Notebooks

MARVIN enables an Automated ML environment similar to an “app store” in which a new “discoverable” 
ML/DL capability can be added by authoring a simple Python class satisfying the method interface, with 
tuning hints and a bit of metadata from the taxonomy. Currently, MARVIN contains 600+ 
datasets/problems, 330+ primitives, and 5 Million+ Pipeline Runs.

Assembling an Optimal ML/DL Pipeline
Schematic of AutoML Pipeline Search:  preprocessing, 

featurization/embeddings, feature selection, train an estimator, 
hyperparameter tuning, and rank by accuracy on the metric.

Datasets

Problems Primitives

5M+
Pipeline
Runs

• Ranked by score
• Cmp pipelines
• Cmp key primitives
• Cmp hyperparameters
• Group by problem 

type & team
• Leaderboards
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• Input data gaps hamper machine learning
• Current gap-agnostic technique of partial convolution 

can handle pixels where all inputs have valid values
• But not effective for earth sciences where data gaps 

vary across inputs!
• For full gap-agnosticity, we developed generalized 

versions of partial convolution, partial neural network 
layer, and input relevance calculation

• Our example applications:
• Regression: Gap-filling remotely-sensed snow cover 

fraction (SCF) through downscaling
• Classification: Using Climate Prediction Center (CPC) 

Experimental Objective Blend inputs for predicting 
United States Drought Monitor (USDM) categories

1. Introduction

A. SCF gap-filling using Super-Resolution 
Convolutional Neural Network

• Target: MOD10A1 C5 SCF (1-km version)
• Core input/s: 5-km MOD10A1 C5 SCF: SCF, Cloud 

Cover Fraction (CCF), Confidence Index (CI)
• Auxiliary inputs (1 km resolution): 

• static terrain: elevation, slope, aspect
• Land Surface Model dynamics (Noah-MP): Precip, 

Snow Water Equivalent (SWE), surface radiative 
temperature, Leaf Area Index (LAI)

• Satellite-based: C5: MOD10A1 snow albedo, 
MOD11A1 land surface temperature (LST)

• 3° X 3° domain centered over Lake Tahoe ( CA-NV 
border), 3- year training (2009-2011), 2012 for 
validation, 2005-2007 for further synthetic cloud 
masking

B. Input relevances in USDM classification
• Data resolved to US Climate Division polygons
• CPC Blends’ Short- and Long-Term inputs: Z-index; 

60-month Z-index; Modified and Hydrologic Palmer 
Drought Indices (PMDI, PHDI); Precipitations for 1, 3, 
6, 12, 24 and 60 months; CPC soil moisture  

• Training years 2006-2018, Validation 2019
• 1 intermediate layer of 16 neurons
• Our modified Softmax-Gradient Layer-wise 

Relevance Propagation (SGLRP) for better input 
contrast and relevance conservation

2. Data and methododology

• Example-day predictions

• Spatial error: ML-based prediction vs. climatology

3a. Results (SCF gap-filling) 3b. Results (USDM input relevances)

• SCF gap-filling:
• Our generalized technique successfully recreates synthetically masked-out areas much better than the climatology baseline

• USDM input relevances:
• Regular training bars (no-hatch) and fully gap-agnostic ones (star and diagonal hatchings) show different information 

• These advancements provide the earth science community with a gap-agnostic Machine Learning infrastructure tool

4. Summary

• Iwana, B. K. et al (2019), Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation, arXiv:1908.04351
• Liu, G., et al. (2018), Image Inpainting for Irregular Holes Using Partial Convolutions, arXiv:1804.07723 
• Vandal, T., et al. (2017), DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution, DOI: http://dx.doi.org/10.1145/3097983.3098004 

5. References



Logistics, resource planning, and damage 
estimation are difficult tasks after a natural disaster, 
and putting first responders into post-disaster 
situations is dangerous and costly. Using passive 
methods, such as analysis on satellite imagery,  
to perform damage assessment saves manpower, 
lowers risk, and expedites an otherwise  
dangerous process. 

The Joint Damage Scale, a common framework for classifying damage. 
We also present the Joint Damage Scale, a first attempt to create a unified assessment scale for 
building damage in satellite imagery across multiple disaster types, structure categories, and 
geographical location. 

The Joint Damage Scale is based mainly on HAZUS, FEMA’s Damage Assessment Operations 
Manual, the Kelman scale, and the EMS-98. Literature from the GIS community and expert insights 
from the California and Indiana Air National Guards and the US Air Force, help ground the scale in 
operational relevance.

xBD: the largest building damage assessment dataset to date. 

This work presents a preliminary report on xBD, a new large-scale 
dataset for advancing change detection and building damage 
assessment for humanitarian assistance and disaster recovery 
research. xBD provides pre- and post-event multi-band satellite 
imagery from a variety of disaster events with building polygons, 
classification labels for damage types, ordinal labels of damage 
level, and corresponding satellite metadata.

The xView 2.0 Challenge
Potential use cases for xBD include  
the following:

xBD provides 

•	 building polygons
•	 ordinal regression labels for building damage
•	 multi-class labels for environmental factors that caused  
	 the damage. 

Given training data of pre- and post-event imagery pairs, the 
challenge is to create models and methods that can extract 
building polygons and assess the building damage level of 
polygons on an ordinal scale. Furthermore, the models and 
methods must assign an additional multi-class label to each 
polygon that indicates which natural force caused the damage  
to the building.

Volcanic Eruption

Flood

Dam Collapse

Landslide

Wildfire

Wind

Earthquake/Tsunami

Laos (2018)

KEY

Sulawesi (2018),
Lombok (2018)

Myanmar (2018)

Harvey (2018)

Kerala (2018)

Idai (2019) 

Nepal/India/
Bangladesh (2017)

Michael (2018)
Irma (2017)

Florence (2018)
Matthew (2016)

Attica (2018)California (2018):
Carr, Mendocino,
Santa Rosa

Sierra Leone (2017)

Brumadinho (2019)

Mocoa (2017)

Haiti (2010)
Mexico City (2018)

Guatemala
Fuego (2018)

Geographical distribution and disaster types of all disasters respresented in xBD.

Examples of wind damage. None, minor, and major (left to right).

Examples of fire damage. None and destroyed (left to right).

Examples of flooding damage. None to destroyed (left to right).

Disaster Level Structure Description

0 (No Damage) Undisturbed. No sign of water, structural or shingle damage, or burn marks.

1 (Minor 
Damage)

Building partially burnt, water surrounding structure, volcanic flow nearby,  
roof elements missing, or visible cracks.

2 (Major 
Damage)

Partial wall or roof collapse, encroaching volcanic flow, or surrounded by 
water/mud.

3 (Destroyed) Scorched, completely collapsed, partially/completely covered with water/mud, 
or otherwise no longer present.

Building 
Annotations 

700,000 

Countries 
Represented

15

Area 5,000 km2

Disaster Types 
Represented

Dam collapse, earthquake/tsunami, flood, landslide,  
volcanic eruption, wildfire, wind

Environmental 
Factors 
Represented

Fire, water, smoke, lava, wind

xBD: A Dataset for Assessing Building Damage from Satellite Imagery
Ritwik Gupta, Bryce Goodman, Nirav Patel, Richard Hosfelt, Sandra Sajeev, Eric Heim, Jigar Doshi, Keane Lucas, Howie Choset, Matthew Gaston

Partners

More details at https://xview2.org

“xBD: A Dataset for Assessing Building Damage from Satellite 
Imagery” (paper presented at CVPR 2019)  
https://arxiv.org/pdf/1911.09296.pdf
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Data Set Splits

Split Images Polygons

Train 18,336 632,228

Test 1,866 109,724

Holdout 1,866 108,784

Baseline Model 
Our baseline model for the xView 2.0 challenge consisted 
of two parts.  First, a localization model based on SpaceNet 
(https://spacenetchallenge.github.io/) is used to segment 
buildings from background, which achieved an Intersection of 
Union (IoU ) of 0.97 and 0.66 respectively.  The second model 
assigns a ordinal damage scale label to each segmented 
building that contains a pretrained 50 layer residual network 
backbone combined with a smaller convolutional network 
trained for this task.

Baseline Model Damage Classification Performance

Damage Type F1 Score Precision Recall

No Damage 0.6631 0.8770 0.5330

Minor Damage 0.1435 0.1971 0.1128

Major Damage 0.0094 0.7259 0.0047

Destroyed 0.4657 0.5050 0.4321
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Poster 15: Exploring Sentinel-1 and Sentinel-2 diversity for 
Flood inundation mapping using deep learning

Goutam Konapala1,2 and Sujay V Kumar1

1Hydrologic Science Laboratory, NASA-GFSC, Greenbelt , Maryland
2University Space research association , Greenbelt , Maryland

• Our results indicated that even though the SAR data is not affected by cloud cover, poor contrast between VV and VH backscatter has affected S1 data’s flood

inundation mapping performance.

• The trained U-net was able to achieve a median F1 score of 0.74 when using DEM and S1 bands as input in comparison to 0.63 when using only S1 bands

highlighting the active positive role of DEM in mapping floods.

• Among the S2 bands, HSV (Hue, Saturation, Value) transformation of Sentinel 2 data has achieved a median F1 score of 0.91 outperforming the commonly

used water spectral indices owing to HSV’s transformation’s superior contrast distinguishing abilities.

• Also, the U-Net algorithm outperforms the MODIS NRT products by around 50%.

Summary:

Identification of flood water extent from satellite images has

historically relied on either synthetic aperture radar (SAR) or

multi-spectral (MS) imagery. But MS sensors may not

penetrate cloud cover, whereas SAR is plagued by

operational errors such as noise-like speckle challenging

their viability to global flood mapping applications. An

attractive alternative is to effectively combine MS data and

SAR, i.e., two aspects that can be considered

complementary with respect to flood mapping tasks.

Therefore, in this study, we explore the diverse bands of

Sentinel 2 (S2) derived water indices and Sentinel 1 (S1)

derived SAR imagery along with their combinations to access

their capability in generating accurate flood inundation maps

using a fully connected deep convolutional neural network

known as U-Net.

Motivation

Data

We use a variation of Convolutional neural network

architectures called as U-Net for flood identification. U-Net

has been referred to as having an effective structure to

successfully perform image segmentation tasks (

Ronneberger et al., 2016). Firstly, the encoder half of the

model carries out a downsampling process, bringing the

input image down to small size feature matrix (Figure 2).

Secondly, the decoder constructs the model output using the

features as input and carries out an upsampling process to

bring back the spatial information of input image

Figure 2: Pictorial representation of U-net architecture 

adopted for segmentation of water extents

U-Net

Implications

For this study, we use a new georeferenced flood label data

i.e. Sen1Floods11 (Bonafiell et al., 2020) which provides

flood inundation labels spanning over 11 flood events across

the world (Table 1, Figure 1). This dataset contains human

supervised flood labels generated for 446 images at 10-
meter resolution at 512×512 dimensions. The dataset further

provides corresponding S1 and S2 bands for the labeled

flood events. For our study, we only use all the 446 human

supervised images for deep learning model evaluation.

Figure 1:Locations of flood events sampled in Sen1Floods11

Table 1: Flood event acquisition time in Sen1Floods11

Results
Impact of DEM on S1

Figure 4: The fractional difference between performance of S1

bands+DEM and S1 is shown in (A). Flood inundation of a

location in Paraguay based on ground truth(B), produced by

U-Net when using (C) S1+DEM as input and (D) HSV + DEM

as input.

Difference in performance between S2 and S1

Figure 5: Boxplots representing the fractional difference

between (A) cAWEI+DEM (B) cNDWI+ DEM (C) HSV +DEM

and S1+DEM.

Figure 6: Flood inundation of a location in India based on

ground truth(A), produced by U-Net when using (B) S1+DEM

as input and (C) HSV + DEM as input.

Performance change between S1+S2 and S2

Figure 7: Boxplots representing the fractional difference in 

performance between (A) S1+cNDWI+DEM and 

cNDWI+DEM, (B) S1+cAWEI+DEM and cAWEI+DEM (C) 

S1+HSV+DEM and HSV+DEM

Performance improvement of between S1+S2 over MODIS NRT

Figure 8: Boxplots representing the fractional difference in 

performance between (A) S1+cAWEI+cNDWI+DEM (B) S1+HSV 

+DEM and MODIS NRT

References:
Bonafilia, D., Tellman, B., Anderson, T., & Issenberg, E. (2020). 

Sen1Floods11: a georeferenced dataset to train and test deep 

learning flood algorithms for Sentinel-1. 2020 IEEE/CVF Conference 

on Computer Vision and Pattern Recognition Workshops (CVPRW), 

835-845.

O. Ronneberger, P. Fischer and T. Brox, "U-net: Convolutional 

networks for biomedical image segmentation", Proc. Int. Conf. Med. 

Image Comput. Comput.-Assist. Intervent. (MICCAI), pp. 234-241, 

2015.

Konapala G., Kumar S.V., Ahmed S., Exploring Sentinel-1 and 

Sentinel-2 diversity for Flood inundation mapping using deep 

learning,  (In review)

Experimental setup & evaluation 
criteria

The 446 images used in this study are divided randomly into

splits containing 70 % of images for training, 20 % for

validating and 10 % for testing. Several possible

combinations were tested. For all the combinations, a

separate set of experiments with DEM as an additional input

to combination bands of S-1 and S-2 were also run. Firstly, in

case of S1, we use both VV/VH bands to establish

benchmark performance of S-1 for flood inundation mapping.

In case of S-2, the combined spectral indices of NDVI and

MNDVI (cNDVI), AWEIsh and AWEInsh (cAWEI) and their

combination as input to our deep learning algorithm. Also,

HSV bands and their combination with spectral indices were

used in our experiment. Finally, all S-2 band configurations

are combined with S-1 to evaluate S-1 and S-2

combinations. Precision, recall and their harmonic mean (F1

Score) were used to evaluate combinations (Figure 3).

Figure 3:Schematic showing calculation of evaluation metrics

ID Country S2 Date S1 Date

1 BOLIVIA 2/15/2018 2/15/2018

2 GHANA 9/19/2018 9/18/2018

3 INDIA 8/12/2016 8/12/2016

4 VIETNAM 8/4/2018 8/5/2018

5 NIGERIA 9/20/2018 9/21/2018

6 PAKISTAN 6/28/2017 6/28/2017

7 PARAGUAY 10/31/2018 10/31/2018

8 SOMALIA 5/5/2018 5/7/2018

9 SPAIN 9/18/2019 9/17/2019

10 SRI LANKA 5/28/2017 5/30/2017

11 USA 5/22/2019 5/22/2019

(A)
(B) (C) (D)

(A) (B) (C)
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