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= Poster #53: Using an LSTM and Classification Methods to Determine Risk of
dB/dt Threshold Crossings as Proxy for Geomagnetically Induced Currents -
Michael Coughlan, UNH.

= Poster #57: Comparison of Time Series Techniques to Model Connections
Between Solar Wind Input and Geomagnetically Induced Currents - Amy Keesee,

Gannon [EEonline, 2016]

= Worldwide/Nationwide GIC data are not available.

UNH. = Qur study focuses on the prediction of large geomagnetic field disturbances, a trigger
of GICs.
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Use different machine learning techniques
=  Multi-layered LSTM, Artificial Neural Network, Convolutional Neural
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1hr MLT grids and select max dBs/dt and max dBz/dta in each bin as our dataset.

* Red circles indicate potential GIC locations where dB/dt went higher than
100nT/min in the past few hours.
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However, it won’t be troublesome to forecast several hundreds nT/min that
potentially produces a catastrophic GIC event.

Our machine-learned predictions (right) show a good agreement with the binned Our machine-learned predictions (right) show a good agreement with the binned
SuperMAG data (left) on a larger spatial scale. SuperMAG data (left) on a larger spatial scale.
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Summary

= We developed a prototype of a multi-variate LSTM model using 2 years of OMNI and SuperMAG data.
* The prototype model catches over 100nT/min of dB/dt relatively well on 09 Mar 2012 geomagnetic storm.
= Once matured, this model can provide an advanced warning of GICs that are typically triggered by large dB/dt.

" |n addition to the ML-GIC models, MAGICIAN team provides the low-cost, research-capable magnetometer arrays in AK and NH,
and the GIC measurements in AK to the space science community.

This work is supported by NSF EPSCoR Grant #1920965.
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1. Introduction and Objectives

¢ The main objective of this project was to assess the viability of
convolutional neural network-based image -classifier architectures to
automatically detect flooded areas in polarimetric radar imagery collected
by the NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) instrument. UAVSAR is a fully polarimetric L-band synthetic
aperture radar, flown aboard a NASA Gulfstream III aircraft (see Figure 1).

* The objectives of our project were as follows:

1. Build a sizable data set of matched UAVSAR imagery and flood
masks, to use as training and testing data for the machine learning
algorithms. We are using UAVSAR data collected after Hurricane
Harvey for this purpose.

2. Train two pixelwise predictors, U-Net and SegNet (both
established convolutional neural network architectures) using the
flood labels from objective #1, and evaluate the pixelwise

prediction accuracy of each candidate model on blind validation
data.

o
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Fig. 1. UAVSAR mounted on a NASA Gulfstream IIl aircraft. The
UAVSAR radar pod is mounted under the body of the aircraft.

2. Automated Flood Mapping Techniques

* There are pre-existing methods for detecting flooding in UAVSAR imagery
based on manual interpretation (time-consuming), or simple decision tree or
thresholding (low accuracy). However, we believed these methods were
likely to be outperformed by more modern image classification approaches,
including convolutional neural networks.

* Convolutional neural network architectures such as fully-convolutional-
networks and encoder-decoder networks, as shown in Figure 2, immediately
lend themselves to our per-pixel labeling effort. These networks utilize only
convolutional and other spatial feature-preserving layers throughout the
architecture in order to capture discriminative spatial patterns represented in
the input images associated with the pixelwise labels.

*  We tested two well-known architectures from the literature, SegNet and U-
Net, and compared the results to a pre-existing decision tree classifier used
as a baseline.
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Fig. 2. lllustration of the U-Net architecture, from Ronneberget et al.,
“U-Net: Convolutional Networks for Biomedical Image
Segmentation,” MICCAI 2015, https://arxiv.org/abs/1505.04597

3. Manual Labelling of Flooded UAVSAR Data

We developed a simple labelling tool which shows the user an image segment
from the UAVSAR imagery, alongside various reference data to aid in
determining the appropriate label. The user can click the button corresponding to
the desired label for that segment, and the tool will then prompt the user with the
next segment. An example is shown in Figure 3.

We labelled 10873 total image segments (covering over 3.5 million UAVSAR
image pixels). After manual labelling, we extracted 40000 randomly located,
overlapping 64x64 pixel image patches from two flight lines to use for training.
300 randomly located, non-overlapping patches were extracted for
testing/validation and kept separate from the training set.

Labelling Segment 1D: 4739

UAVSAR Color Composite.

‘.

Sentinel-2 Sentinel-1 Usace

UAVSAR Classification UsGs

ory Forest
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Fig. 3. Example of the UAVSAR manual flood labelling tool, for a flooded forest area.

4. Results and Discussion

*  We generated predicted maps of flooded and non-flooded areas
for UAVSAR data collected over the Texas Gulf Coast during
flooding caused by Hurricane Harvey in August 31 - September
1, 2017, as shown in Figure 4.

¢ We assessed the classifier accuracy using manually labelled testing
data held out from training, as well as NOAA aerial imagery (used
for validation manually at specific points shown in Figure 4 as
black circles, limited by the cloud-free coverage of the imagery).
While the map shows five different classes, for the purposes of
assessing the classifier accuracy, we broke the results down into
only two classes, flooded (containing open water and flooded
vegetation) and non-flooded (containing all other classes).

¢ The overall accuracy of our U-Net classifier on the manually
labelled testing data was 87%, with 85% accuracy for our SegNet
classifier. The Kappa coefficient of U-Net was 0.73, with F1 score
for the non-flooded class of 0.89 and F1 score for the flooded class
of 0.84. SegNet had similar but slightly lower accuracies than U-
Net. The baseline classifier (decision tree method) had overall
accuracy of 75%, with Kappa coefficient of 0.48, non-flooded F1
score of 0.81, and flooded F1 score of 0.66. Both U-Net and
SegNet outperformed the baseline classifier.

¢ Using the NOAA aerial imagery, U-Net had overall accuracy of
82%, with Kappa coefficient of 0.65. SegNet had similar but
slightly lower accuracy (by ~2%). None of the classifiers are able
to accurately identify flooding in urban areas, however, which is an
area of future work (to collect more training data in these spatially
complex, heterogeneous environments).
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O NOAA Aerial Imagery Validation Point
1 UAVSAR Training / Testing Lines
U-Net Predicted Landcover Class
Il Open Water
I Flooded Vegetation
I Non-Flooded Vegetation
I Bare Ground
B Urban / Other

Fig. 4. Map of the study area affected by Hurricane Harvey, showing the U-Net predicted
classes generated from the UAVSAR data as input. The dashed black boxes show the
UAVSAR flight lines used to collect training data. The black circles show points used to
validate the map using NOAA aerial imagery.

5. Conclusions and Future Work

We demonstrated potential of CNN-based image classifiers for classification
of flooded areas in UAVSAR data. With U-Net, 87% overall accuracy using
manually labelled testing data, and 82% overall accuracy (outside of urban areas)
when validated using NOAA aerial imagery (0.65 Kappa coefficient).

Future Work: Apply trained classifiers to Hurricane Florence data (see Figure 5)
to test transferability of trained classifiers to other study areas and assess classifier
accuracy. Collect more training and testing data, particularly in urban
environments, which is a current limitation of this approach. Test other input to
classifiers, and increased patch size.

77.5°W

Legend

U-Net Predicted
Landcover Class
I Open Water
I Flooded

I Bare Ground
I Urban / Other

Fig. 5. UAVSAR data (left) and map of predicted classes (right) when applying the
Hurricane Harvey trained U-Net classifier to UAVSAR data from Hurricane Florence. The
end goal is to have a trained classifier ready to go that can be applied to data from future
hurricanes.
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/ Introduction \

Machine learning has achieved “human-level”
intelligence in tasks ranging from object
recognition and speech recognition to mastering
the game of Go. However, Earth scientists have
vet to fully take advantage of deep learning’s
potential. The biggest obstacles are lack of
expertise, the high barrier to entry for existing
deep learning toolkits, and the intensive
computational and data requirements. We are
addressing these challenges with DELTA (Deep
Earth Learning, Training, and Analysis), a toolkit
for Earth scientists and commercial analysts to
easily apply deep learning to their own problems.

Users only need to provide labeled training data
for their problems. DELTA pre-learns useful
features for the satellite data sources we are
targeting — WorldView, Landsat, and Sentinel-1 --
through large volumes of data on the NASA
Pleiades supercomputer. The learned features
serve as a starting point to solve users’ specific
problems, which can be shared among
researchers, amortizing data and computation
costs. DELTA then builds task-specific classification
networks on top of the learned representations.

We are applying DELTA to mapping flood
inundation extent. DELTA will accelerate Earth
science research by placing the power of deep
learning in the hands of any researcher, achieving
“human-level” intelligence in diverse classification
tasks which are currently solved manually or with
less capable automatic classifiers, drastically
expanding the spatial and temporal scales on
which many remote sensing problems can be

studied.
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/D ELTA

e Uses autoencoders to learn features to transform raw satellite data into an
informative representation.

* Learns task-specific networks from users' training data, building on the pre-
learned features.

* Provides tools for data labeling and visualization of data, natively handles
Geotif images.

DELTA is open source and available at https://github.com/nasa/delta
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Neural Network

Training
Classifier

Data

- _ .

O g o % , Q o &

:JL:) : ?.?. — /O — IR g

@ Input Image O Classified
(© Neural Network output
O

Classifier

DELTA takes scientists' data and produces a trained neural
network. To classify images delta uses the learned network to

label new data as part of a larger data processing pipeline. j

R

esults

We have tested our system on Worldview images
collected from different flooding events over the past 15
years. Training data was manually annotated by our USGS
team members. We trained on 80 images and tested on
20 hold-out images.

= I S

Water >99% ~83%

No Water ~80% ~98%

\_

Left: Input World View flood image (false
colour). Right: Flood map predicted by DELTA
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Improve Hurricane Intensity Forecast by Machine Learning
of NASA Satellite Data
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Objective: Approach: 1. Augment predictors for R
Employ machine learning (ML) techniques and apply NASA satellite 2. Employ machine learning
observations to improve tropical cyclone (TC) intensity forecast, especially

rapid intensification (RI) forecast NASA-JPL
Motivation: IBM Watson Studio: An end-to-end data analytics platform
» TC intensity forecast has been a challenge for decades o s Deploy S
» RI, defined as hurricane maximum sustained wind speed change greater oo Models Results
than 30 knots within 24 hours, is particularly difficult to predict. Improving
RI forecast accuracy is the top priority of the National Hurricane Center IBM NOAA-NHC
(NHC)_ (in-kind) (in-kind)

 The NHC's probability of detection (POD) for Rl in the Atlantic basin is ~_
< 40% and the false alarm ratio (FAR) is > 60% (Kaplan et al. 2015).

Identifying New Predictors for Ri Building a Machine Learning Model
1 North Atlantic Basin
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Conclusions:

« Tropical cyclone intensity change is approximately linearly correlated with surplus inner-core precipitation, ice water path and outflow temperature.
« The JPL-ML model significantly outperforms the NHC operational Rl consensus forecast results. Our probability of detection for Rl in the Atlantic is 40%, 60%
and 200% higher than the NHC operational model while the false alarm ratio is only 4%, 7% and 6% higher for 25-, 30- and 35-kt Rl thresholds, respectively.

References:

Su, H., Wu, L., Jiang, J. H., Pai, R., Liu, A., Zhai, A. J., et al., Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning.
Geophysical Research Letters, 47, e2020GL089102, http://dx.doi.org/10.1029/2020GL089102 (2020).

Kaplan, J. et al., Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models, Weather Forecast. 30 1374-96,

https:// doi.org/10.1175/WAF-D-15-0032.1 (2015).

Acknowledgements:

We acknowledge funding support from JPL and in-kind support from IBM and NOAA. The work was conducted at Jet Propulsion Laboratory, California Institute of Technology, under contract
with NASA.



http://dx.doi.org/10.1029/2020GL089102

National Aeronautics and Space Administration

Automated Machine Learning (AutoML) as a Service for
the Earth Sciences

Technical Lead: Brian Wilson
Co-Is: Alice Yepremyan, Diego Martinez, Sami Sahnoune, Edwin Goh,
Sujen Shah, Kai Pak, Santiago Lombeyda, Chris Mattmann, and Wayne Burke
Jet Propulsion Laboratory / California Institute of Technology

g

Optimization

Exploring the library of ML algorithms, datasets/problems, pipelines

MARVIN enables an Automated ML environment similar to an “app store” in which a new “discoverable”
ML/DL capability can be added by authoring a simple Python class satisfying the method interface, with
tuning hints and a bit of metadata from the taxonomy. Currently, MARVIN contains 600+
datasets/problems, 330+ primitives, and 5 Million+ Pipeline Runs.
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Poster 13: Development of Gap-agnostic Machine Learning techniques

EARTH SYSTEM SCIENGCE
W  INTERDISCIPLINARY
CENTER

Soni Yatheendradas'?, Sujay Kumar?, Christa Peters-lidard?, and David Mocko?3

1. Introduction

3a. Results (SCF gap-filling)

for Earth Science applications

TUMD ESSIC, °NASA GSFC, 3SAIC

* |nput data gaps hamper machine learning

» Current gap-agnostic technique of partial convolution
can handle pixels where all inputs have valid values

» But not effective for earth sciences where data gaps
vary across inputs!

» For full gap-agnosticity, we developed generalized
versions of partial convolution, partial neural network
layer, and input relevance calculation

* Our example applications:

» Regression: Gap-filling remotely-sensed snow cover
fraction (SCF) through downscaling

 (lassification: Using Climate Prediction Center (CPC)
Experimental Objective Blend inputs for predicting
United States Drought Monitor (USDM) categories

2. Data and methododology

A. SCF gap-filling using Super-Resolution
Convolutional Neural Network
» Target: MOD10A1 C5 SCF (1-km version)

* Core input/s: 5-km MOD10A1 C5 SCF: SCF, Cloud
Cover Fraction (CCF), Confidence Index (Cl)

* Auxiliary inputs (1 km resolution):
 static terrain: elevation, slope, aspect

* Land Surface Model dynamics (Noah-MP): Precip,
Snow Water Equivalent (SWE), surface radiative
temperature, Leaf Area Index (LAI)

o Satellite-based: C5: MOD10A1 snow albedo,
MOD11A1 land surface temperature (LST)

 3° X 3° domain centered over Lake Tahoe ( CA-NV
border), 3- year training (2009-2011), 2012 for
validation, 2005-2007 for further synthetic cloud
masking

B. Input relevances in USDM classification
» Data resolved to US Climate Division polygons

* CPC Blends’ Short- and Long-Term inputs: Z-index;
60-month Z-index; Modified and Hydrologic Palmer

Drought Indices (PMDI, PHDI); Precipitations for 1, 3,

6, 12, 24 and 60 months; CPC soil moisture
* Training years 2006-2018, Validation 2019
* 1 intermediate layer of 16 neurons

* Our modified Softmax-Gradient Layer-wise
Relevance Propagation (SGLRP) for better input
contrast and relevance conservation

3b. Results (USDM input relevances)

Example-day predictions
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[b] CPC all inputs (Western formulation domain)

<
I=

—
w

=
|—I

Relative Importances
=
P

]
|
_I_
| | |
| | |
L) _Jr____ bl _lL_ AN
| | |
| |

| ! | |
ﬂﬁ\' #ﬁk ?‘q\ﬁ\ {-.."F" .{-.."Lﬁ {.."‘.F" 1:5::\

=
o

o & o=

P o A a0 @0 g0 e 0
© 0 o o 4 74 0
et R ™ o T e o C
[c] CPC all inputs (non-Western formulation domain)
ot 0.4 -
i
s
S 0.3
o
o
E 0.21 AR
S
= 0.1 O
AL
2 |
% 0.0 -
{-..T-..- 1:\’5-..'{\ fxﬁa ﬂ\":.l
o % e oe® N
o™ o™ o™ &
[d] CPC short-term blend inputs
CONUS
All-valid-input examples training ( )
B2 & relevances
All-examples training;
Fehal all-inputs-valid relevances
All-examples training;
R CPC soil moist-invalid relevances
All-examples training;
BN ppis-invalid relevances
sl Normalized Fractional Information

[e] CPC long-term blend inputs
(Western formulation domain)

[f] CPC long-term blend inputs
(non-Western formulation domain)

4. Summary
* SCF gap-filling:

» Qur generalized technique successfully recreates synthetically masked-out areas much better than the climatology baseline

* USDM input relevances:

« Regqular training bars (no-hatch) and fully gap-agnostic ones (star and diagonal hatchings) show different information

» These advancements provide the earth science community with a gap-agnostic Machine Learning infrastructure tool
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Logistics, resource planning, and damage
estimation are difficult tasks after a natural disaster,
and putting first responders into post-disaster
situations is dangerous and costly. Using passive
methods, such as analysis on satellite imagery,

to perform damage assessment saves manpower,
lowers risk, and expedites an otherwise

dangerous process.

Building 700,000
Annotations

Countries 15
Represented

Area 5,000 km2

Disaster Types
Represented

Dam collapse, earthquake/tsunami, flood, landslide,
volcanic eruption, wildfire, wind

Environmental
Factors
Represented

Fire, water, smoke, lava, wind

xBD: the largest building damage assessment dataset to date.

This work presents a preliminary report on xBD, a new large-scale
dataset for advancing change detection and building damage
assessment for humanitarian assistance and disaster recovery
research. xBD provides pre- and post-event multi-band satellite
imagery from a variety of disaster events with building polygons,
classification labels for damage types, ordinal labels of damage
level, and corresponding satellite metadata.

More details at https://xview?2.org

“xBD: A Dataset for Assessing Building Damage from Satellite
Imagery” (paper presented at CVPR 2019)
https://arxiv.org/pdt/1911.09296.pdf
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xBD: A Dataset for Assessing Building Damage from Satellite Imagery pD v

Disaster Level Structure Description

0 (No Damage) Undisturbed. No sign of water, structural or shingle damage, or burn marks.

1 (Minor Building partially burnt, water surrounding structure, volcanic flow nearby,

Damage) roof elements missing, or visible cracks.

2 (Major Partial wall or roof collapse, encroaching volcanic flow, or surrounded by

Damage) water/mud.

3 (Destroyed) Scorched, completely collapsed, partially/completely covered with water/mud,
or otherwise no longer present.

The Joint Damage Scale, a common framework for classifying damage.

We also present the Joint Damage Scale, a first attempt to create a unified assessment scale for

building damage in satellite imagery across multiple disaster types, structure categories, and
geographical location.

The Joint Damage Scale is based mainly on HAZUS, FEMA's Damage Assessment Operations
Manual, the Kelman scale, and the EMS-98. Literature from the GIS community and expert insights
from the California and Indiana Air National Guards and the US Air Force, help ground the scale in

operational relevance.
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Geographical distribution and disaster types of all disasters respresented in xBD.

Ritwik Gupta, Bryce Goodman, Nirav Patel, Richard Hosfelt, Sandra Sajeev, Eric Heim, Jigar Doshi, Keane Lucas, Howie Choset, Matthew Gaston

Examples of wind damage. None, minor, and major (left to right).

Examples of fire damage. None and destroyed (left to right).

Examples of flooding damage. None to destroyed (left to right).

The xView 2.0 Challenge

Potential use cases for xBD include
the following:

XBD provides

* building polygons
» ordinal regression labels for building damage

* multi-class labels for environmental factors that caused
the damage.

Given training data of pre- and post-event imagery pairs, the
challenge is to create models and methods that can extract
building polygons and assess the building damage level of
polygons on an ordinal scale. Furthermore, the models and
methods must assign an additional multi-class label to each

polygon that indicates which natural force caused the damage
to the building.

Data Set Splits

Split Images Polygons
Train 18,336 632,228
Test 1,866 109,724
Holdout | 1,866 108,784

Baseline Model

Our baseline model for the xView 2.0 challenge consisted

of two parts. First, a localization model based on SpaceNet
(https://spacenetchallenge.github.io/) is used to segment
buildings from background, which achieved an Intersection of
Union (loU ) of 0.97 and 0.66 respectively. The second model
assigns a ordinal damage scale label to each segmented
building that contains a pretrained 50 layer residual network
backbone combined with a smaller convolutional network
trained for this task.

Baseline Model Damage Classification Performance

Damage Type  F1 Score Precision Recall

No Damage 0.6631 0.8770 0.5330

Minor Damage | 0.1435 0.1971 0.1128

Major Damage | 0.0094 0.7259 0.0047/

Destroyed 0.4657 0.5050 0.4321
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Flood inundation mapping using deep learning

Goutam Konapala'? and Sujay V Kumart

niversities Space Research Associatio

'Hydrologic Science Laboratory, NASA-GFSC, Greenbelt , Maryland
’University Space research association , Greenbelt , Maryland

ldentification of flood water extent from satellite images has
historically relied on either synthetic aperture radar (SAR) or
multi-spectral (MS) imagery. But MS sensors may not
penetrate cloud cover, whereas SAR Is plagued by
operational errors such as noise-like speckle challenging
their viability to global flood mapping applications. An
attractive alternative Is to effectively combine MS data and
SAR, le., 1two aspects that can be considered
complementary with respect to flood mapping tasks.

We use a variation of Convolutional neural network
architectures called as U-Net for flood identification. U-Net
has been referred to as having an effective structure to
successfully perform image segmentation tasks (
Ronneberger et al., 2016). Firstly, the encoder half of the
model carries out a downsampling process, bringing the
iInput Image down to small size feature matrix (Figure 2).
Secondly, the decoder constructs the model output using the
features as Input and carries out an upsampling process to

Impact of DEM on S1
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—igure 4: The fractional difference between performance of S1
pands+DEM and S1 is shown in (A). Flood inundation of a
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ocation in Paraguay based on ground truth(B), produced by

Therefore, In this study, we explore the diverse bands of bring back the spatial information of input image
UJ-Net when using (C) S1+DEM as input and (D) HSV + DEM

Sentinel 2 (S2) derived water indices and Sentinel 1 (S1) 2

derived SAR imagery along with their combinations to access : “ as input._ |
their capability in generating accurate flood inundation maps T 170 | . Difference in performance between S2 and S1
using a fully connected deep convolutional neural network 0y il 60 - R —
known as U-Net. _,H_, l S _,H_,
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Figure 5. Boxplots representing the fractional difference
between (A) cAWEI+DEM (B) cNDWI+ DEM (C) HSV +DEM

=» Conv 3x3 + RelU
f Up-conv 3X3

For this study, we use a new georeferenced flood label data
l.e. SenlFloodsll (Bonafiell et al., 2020) which provides

| _ | Y and S1+DEM.

flood inundation labels spanning over 11 flood events across | S | | R @) -
the world (Table 1, Figure 1). This dataset contains human Figure 2: Pictorial representqtlon of U-net architecture -
supervised flood labels generated for 446 images at 10- adopted for segmentation of water extents NEEEEE
meter resolution at 512x512 dimensions. The dataset further E . | 3 | - % i
provides corresponding S1 and S2 bands for the labeled xperlmenta SEtup evaluation /.’ - ’
flood events. For our study, we only use all the 446 human criteria e

. . . . C
supervised images for deep learning model evaluation.

The 446 images used In this study are divided randomly into . g

splits containing 70 % of images for training, 20 % for
validating and 10 % for testing. Several possible
combinations were tested. For all the combinations, a
separate set of experiments with DEM as an additional input
to combination bands of S-1 and S-2 were also run. Firstly, in N

Figure 6. Flood inundation of a location in India based on
ground truth(A), produced by U-Net when using (B) S1+DEM
as input and (C) HSV + DEM as input.

Performance change between S1+S2 and S2

: (B)
case of S1, we use both VV/VH bands to establish [ eonen oo 010_@)
benchmark performance of S-1 for flood inundation mapping.
In case of S-2, the combined spectral indices of NDVI and _jijj"%*é'%*%'%%‘#" _ZEZ:"#*#‘%%#'*%"%" _z-zzj-%%‘-***-%%%"
MNDVI (cNDVI), AWEIl, and AWEI ., (CAWEI) and their R e omer A M ol -
combination as input to our deep learning algorithm. Also, 5 renra 5 vesir £ o )
& HSV bands and their combination with spectral indices were Figure 7: Boxplots representing the fractional difference in

performance between (A) S1+cNDWI+DEM and
cNDWI+DEM, (B) S1+cAWEI+DEM and cAWEI+DEM (C)
S1+HSV+DEM and HSV+DEM

used In our experiment. Finally, all S-2 band configurations
are combined with S-1 to evaluate S-1 and S-2
combinations. Precision, recall and their harmonic mean (F1

Table 1: Flood event acauisition time in Sen1Floods11 Score) were used to evaluate combinations (Figure 3).

relevant element
ID___Country S2Date  |SlDate ' '

Figure 1:Locations of flood events sampled in SenlFloodsll

Performance improvement of between S1+S2 over MODIS NRT
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SenlFloodsll: a georeferenced dataset to train and test deep
learning flood algorithms for Sentinel-1. 2020 IEEE/CVF Conference
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Summary:

« Our results indicated that even though the SAR data is not affected by cloud cover, poor contrast between VV and VH backscatter has affected S1 data’s flood
iInundation mapping performance.

* The trained U-net was able to achieve a median F1 score of 0.74 when using DEM and S1 bands as input in comparison to 0.63 when using only S1 bands | 5\ ieier p. Fischer and T. Brox, "U-net: Convolutional
highlighting the active positive role of DEM in mapping floods. networks for biomedical image segmentation”, Proc. Int. Conf. Med.

. Among the S2 bands, HSV (Hue, Saturation, Value) transformation of Sentinel 2 data has achieved a median F1 score of 0.91 outperforming the commonly | poag: omPHt Comput-Assist. Inervent. (MICCAD, pp. 234-241,
used water spectral indices owing to HSV’s transformation’s superior contrast distinguishing abillities. gggﬁggl'?zai’vgimosr-;/I-é(/j:mﬁﬂ dsééif:ﬂgfég?nzeu”;;gg';jle ggd

* Also, the U-Net algorithm outperforms the MODIS NRT products by around 50%.

learning, (In review)
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