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Aviation anomaly detection literature

Exceedance detection:
Comparing against the pre-defined thresholds, which are identified by subject-matter experts.
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Aviation anomaly detection literature

Exceedance detection:
Comparing against the pre-defined thresholds, which are identified by subject-matter experts.
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Aviation anomaly detection literature

Supervised learning:

Taking advantage of recent developments in deep learning and recurrent neural networks to tackle the
reliance on the domain knowledge.
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Aviation anomaly detection literature

Supervised learning:

Taking advantage of recent developments in deep learning and recurrent neural networks to tackle the
reliance on the domain knowledge.
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Aviation anomaly detection literature

Unsupervised learning:
Using deep auto-encoders to identify anomalies without the need for labels.
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Aviation anomaly detection literature

Unsupervised learning:
Using deep auto-encoders to identify anomalies without the need for labels.
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Aviation anomaly detection literature

Unsupervised learning:

Using deep auto-encoders to identify anomalies without the need for labels.

Cons:

o Low precision, which means high
number of false positives and low
reliability.

o Itis not easy to extend to multi-class
anomaly detection.
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How to improve the reliability of unsupervised learning

Training CVAE (our model) only on nominal data improved the performance significantly:

o 36.8pp higher precision
o 27.3pp higher recall

Takeaway: how to take advantage
of minimally labelled data that are
available?
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Semi-supervised learning: does it actually work?

Research objective: how to take advantage of all available data.
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Semi-supervised learning: does it actually work?

Research objective: how to take advantage of all available data.
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Anomaly detection case study based on real flight data

Each data instance is 160-s recording of 19 variables during approach of a commercial aircraft to landing.
Attributes cover a variety of systems, including the state and orientation of the aircraft, positions and inputs
of the control surfaces, engine parameters, and auto pilot modes and corresponding states.
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Anomaly detection case study based on real flight data

Each data instance is 160-s recording of 19 variables during approach of a commercial aircraft to landing.
Attributes cover a variety of systems, including the state and orientation of the aircraft, positions and inputs
of the control surfaces, engine parameters, and auto pilot modes and corresponding states.

Training data consists of 18,313 samples falling into four classes:
1. Nominal (66.7%)

2. Speed High (22.9%) &

3. Path High (7.2%) A= —-—%>

4.  Flaps Late (3.2%) = : Approach to land
Separate test data of 6105 samplesisused o= V7

for evaluating the models.
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Anomaly detection performance
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Feature importance with random permutation

Using the trained model, we can identify the most important features for each class of anomaly.
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Latent space configuration: the superiority of the CCLP approach

Both figure show 2D visualization of the 256D latent space of M1+M2 and CCLP models using t-Distributed
Stochastic Neighbor Embedding (t-SNE), color-coded based on the actual class of the data.
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Latent space configuration: thinking about the next steps

We evaluate the relationship between clusters shaped in the latent space and the prediction uncertainty of
the classifier. These results suggest a novel active learning strategy for selecting the most informative data to
be labeled in future efforts.
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Our newest endeavor: best of both worlds

Key idea: Do not sacrifice the compact clustering for the reconstruction quality.

compact clustering loss
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Improvement in accuracy of anomaly detection

1.0
DT-MIL
Bm CCLP
0.8 mE M1+M2
BEE iSAD
> 0.6 -
@]
e
=
9
< 0.4 |
0.2
0.0 -
25 50 125 250

Number of labeled data per class

& usra G




Improvement in the latent space configuration: training set
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Concluding remarks and next steps

We showed that semi-supervised learning works, and it is superior to supervised learning when only a
limited number of labeled data is available:

o CCLP achieves 72.2% accuracy with only 0.55% of data labeled, while the performance of DT-MIL is
31.4%.




Concluding remarks and next steps

Our newest model iSAD reaches 86% accuracy with 5% of data labeled, and outperforms M1+M2 (81%),
CCLP (80%) and DT-MIL (54%).




Concluding remarks and next steps

The combination of enforcement of compact clustering in the latent space via graph theory and improving
the reconstruction quality further enhanced the interpretability and explainability of the model:

o Latent space configuration opens avenues for deploying an active learning strategy to identify the
most informative data for future labeling by subject matter experts.
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Concluding remarks and next steps

We showed that semi-supervised learning works, and it is superior to supervised learning when only a
limited number of labeled data is available:

o CCLP achieves 72.2% accuracy with only 0.55% of data labeled, while the performance of DT-MIL is
31.4%.

Our newest model iSAD reaches 86% accuracy with 5% of data labeled, and outperforms M1+M2 (81%),
CCLP (80%) and DT-MIL (54%).

The combination of enforcement of compact clustering in the latent space via graph theory and improving
the reconstruction quality further enhanced the interpretability and explainability of the model:

o Latent space configuration opens avenues for deploying an active learning strategy to identify the
most informative data for future labeling by subject matter experts.

The reconstruction capability of the new model allows us to evaluate the robustness to perturbations in the
input space and improve it accordingly.
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