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The Search for Life on Ocean Worlds
Jupiter’s moon Europa and Saturn’s moon Enceladus are expected to 
contain a liquid water ocean beneath their icy shells [1, 2]. All life we 
know relies on water, making these moons especially important 
targets for future missions to explore. To support such a mission, JPL 
is working on a suite of instruments capable of searching for life in 
liquid water samples called the Ocean Worlds Life Surveyor 
(OWLS). Finding life in these oceans could finally answer the 
question whether we are alone in the universe. 

Life Moves
One possibility to search for life in water samples is by visually 
inspecting them for motility: the ability to move voluntarily. Motility 
is important to find nutrients and respond to potentially harmful 
stimuli and a distinct indicator of life. One of the instruments included 
in OWLS is a Digital Holographic Microscope (DHM) (Figure 2a). 
The DHM [3] can image a liquid water volume multiple times per 
second at submicron resolution with a depth of field that is 50 times 
larger than that of a conventional microscope. This makes it suitable 
for finding motile microorganisms.

Data Compression
The DHM generates 80 MB/s of data, which quickly exceeds the 
entire downlink capability (~75 MB) for a typical mission to Europa 
or Enceladus. Therefore, we must compress 100s of GBs of data and 
only return the most scientifically salient components to Earth. To 
solve this challenge, we developed an autonomous tool called 
Holographic Examination for Life-like Motility (HELM), which finds 
motile particles within DHM videos and extracts their spatiotemporal 
paths and small image crops. This effectively reduces the amount of 
data by orders of magnitude that needs to be transmitted to Earth 
while preserving most of its information content.

Are we alone?

Figure 2: DHM (Digital Holographic Microscope) for visual inspection of liquid water 
samples: (a) DHM, (b) Raw hologram from the DHM that contains live bacteria.
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Figure 1: Artist’s impression of a mission to Enceladus. A liquid water ocean is 
expected under its ice shell that might contain life. [image: NASA]
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Figure 4: Sending the most life-like imagery back to Earth. HELM reduces the 100s 
of GB of raw DHM data down to ~75MB.
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Figure 3: Tracking and classification of bacteria: (a) Hologram with background 
removed by median subtraction. (b) Tracks for moving objects generated by tracking 
algorithm. (c) Classification of tracks as motile or non-motile. 
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Automated Detection of Motility
HELM uses a multi-step algorithm to differentiate between motile and 
non-motile microorganisms. 
1. Starting with the sequence of raw DHM images (Figure 2b) the 

median is subtracted. This increases the contrast for moving 
objects within the sequence and removes the static background. 

2. Moving objects in the images (Figure 3a) are tracked (Figure 3b). 
3. Track characteristics are extracted to prepare for Machine 

Learning (e.g., average speed, acceleration, turn radii, etc.). 
4. Each track is classified as motile or non-motile using a random 

forest classifier

Data Prioritization and Downlink
Since the data generated by the DHM far exceeds downlink 
capabilities the individual samples are sorted by their priority. The 
priority of each sample is calculated based on its estimated science 
utility (e.g. number of motile particles) and how it differs from the 
other analyzed samples. The compressed data products of the most 
promising samples will then be downlinked to Earth (Figure 4), 
reducing the 100s of GB of raw data down to less than 100 MB. 

Future Work
Going forward we will test the full system on samples from analog 
sites including Mono Lake, CA and Borup Fiord Pass, Canada. 
Through those tests, we will demonstrate the capabilities of OWLS 
and assess its readiness for future space missions.
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Construction Rovers

Abstract
In July 2019, I attended the Lunar Operations and Technologies to Enable Human Exploration of Mars and the 

Moon Workshop. It is a group of NASA scientists who believe that leveraging lunar technologies will allow us to be more 
successful in getting to Mars. They also believe in creating devices that can work on both celestial bodies will save time, 
money, and energy in our inevitable journey into the cosmos. One of the main priorities stated for helping to enable 
Moon and Mars exploration is specified rovers that can complete tasks involving science, maintenance, transportation, 
and construction (Thronson, 2019). NASA’s Martian rover team has done a great job concerning a scientific rover, the 
classic Lunar rover can transport humans on the surface of the Moon, and currently, there is nothing to maintain on any 
celestial body, other than Earth, for a maintenance rover. The last of this Lunar Operations and Technologies task is a 
construction rover, and this is where I have started my theories and experiments to demonstrate actions, hard data, 
possibilities, shortcomings, and abilities of a future construction rover by building and testing a prototype.

The first task of a construction rover is to best prepare the celestial body's surface for the arrival of humans. The 
rover is given the task of preparing the surface that can include clearing away regolith, flattening the ground, and 
moving equipment and debris. This is a demonstration of the proof of concept for the construction rover as an 
autonomous platform using Artificial Intelligence (AI) and Machine Learning (ML) for the rover moving debris. Adding AI 
to the construction rover will best open the door to the system being fully autonomous. The AI of the construction rover 
will consist of separate trained Artificial Neural Network (ANN) for sets of different tasks. An ANN is an AI technique 
that uses the concept of a biological neuron to weigh parameters for predicting. The first ANN has been trained for the 
rover's movement based on incoming sensor data producing states for movement. The next ANN is a Convolution 
Neural Network (CNN) that I am using for object classification, detection, and recognition. A CNN is an ANN, but with 
the added benefit of a convolutional layer that can take into account the surrounding pixels along with the original pixel 
into the training of the neural network. The rover's CNN will be trained on images of which objects to carry and which 
objects to push regarding the AI platform's proposed tasks. The last ANN will be used for reinforcement learning. This 
ANN is not very different from the first other than it will be trained in a simulation to carry out the important task of 
path planning. Each ANN gives the AI platform the ability to make its own decisions from what it sees through its 
camera and reads through its sensors. In the demonstration of the AI construction rover, I hope to show it successfully 
moving an object using these three AI algorithms as one. I further hope that NASA can use the concepts of these AI 
algorithms as a tool for the next step of rover programs, and getting humans more opportunities on other worlds.

Objectives and Components
My objectives are to show that the construction rover can complete the tasks of obstacle avoidance, obstacle detection, 

path planning, and moving an object from one place to another using only its trained autonomy. Briefly speaking these tasks 
are much easier on Earth, but for a construction rover in space, it must be able to complete its task in a hostile environment 
and communicate with us humans on Earth from great distances in space. Current rovers also have the added hardship of 
being moderately controlled by an operator. That's why I'm proposing an autonomous rover using AI to be sent to the rocky 
bodies that can act in real-time not depending on a team of scientists to catch up to a machine that is 100 million miles away. 
Now it is easy to use a team to control a rover, but when there are hundreds in space we will need a more solid method. 
The rover will be trained with many ANNs that will be used in image recognition, translation of sensor states to movements, 
and path planning to demonstrate autonomy level 4. Autonomy level 4 behavior is described as high autonomy where that 
rover is completely autonomous in most situations and conditions with an opening for a human in the loop. NASA Ames’s 
Maria Bualat (2017) Deputy Lead of the Intelligent Robotics Group makes this statement about NASA's relationship with 
autonomous vehicles saying that we always want the “human in the loop because of experience and powerful cognitive 
ability”. I will be the human component that feeds the ANN real-world and synthetic data made specifically for a rover-like 
construction robot to complete the tasks above. A better description of this would be, “directed autonomy,” to which we can 
teach the rovers here on Earth then send it anywhere in the Universe, and it can take the human component with it. 

Hardware
The prototype construction rover-like robot I will be using in this demonstration is a robot that I have built and named Solar 

Powered Operation Vehicle Intelligently Autonomous (SPOVIA) Prime shown in Figure 1. I took much inspiration from the 2004 
EVA test vehicle shown in Figure 2 that was used to simulate possible futures and technology on a foreign rocky body. I used 
the tractor scoop idea from their demonstration and added it to SPOVIA prime. SPOVIA prime is a 35-pound solar-powered 
robot with four strong motors, big wheels, and 30 basic analog sensors consisting of ultrasonic, inferred, ultraviolet, photo, 
accelerometers, and many more. It also includes the more complex components of lidar, GPS, GSM, stereo camera, and USB 
color camera. The processor, which is optimal for AI tasks and training like these, is a Jetson TX2 with a Dual-Core NVIDIA 
Denver 2 64-Bit CPU, Quad-Core ARM® Cortex®-A57 MPCore, and 256 NVIDIA CUDA cores. Also, I will be using the google coral 
TPU to run the object detection model at speeds up to 40 FPS. 

Software
The software I will be using is TensorFlow, PyTorch, and Sci-kit learn for building the ANNs. Pandas, Numpy, and Pymata will 

be used for supporting those modules in Python 3.7. The synthetic data made will contain states of all of the rover’s known 
action possibilities. The real data collected is from tests of the robot's movements and demonstrations of its actions. The data
will be normalized from 0 to 1 among the inputs and outputs and organized into a matrix that contains raw sensor data with 
the last column being the output state determined to act on. The image data is from the COCO dataset and pictures of rocks 
and smalls balls I took for the demonstration of classifying and moving an object.

Figure 1 (2004 EVA ‘Tractor’ )                                                      Figure 2 (SPOVIA Prime )
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Methods and Preliminary Results cont..
Reinforcement learning (RL)

To make the rover go continually straight from one waypoint to another I am using a concept of the algorithm 
pure pursuit in a reinforcement learning neural network to train the algorithm to do its best to go straight when its 
sensors don’t detect any obstacles. A reinforcement learning neural network is the same as any other ANN, but it is 
trained in an ongoing simulation with goals, rewards, and point values. Figure 9 is from the 2D simulation of 
SPOVIA Prime with pure pursuit in mind. The white oval is the rover, the red lines coming outward are the distance 
sensors, and the yellow line represents a point in front of the rover that is to be followed. The rover gets points 
based on how close the slope of its initial position and final position is to the slope of the initial position and end of 
the yellow line. The rover also loses points as the distance sensors (red lines) touch anything. This builds path 
panning into the fabric of its design allowing for easy, not computationally expensive movement.

Figure 9 (2D Simulation of SPOVIA Prime)
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Methods and Preliminary Results
This section shows the algorithms chosen for the construction rover’s autonomous decision making and why. 

Quantitative and qualitative results will be displayed some with graphs and others with pictures of use. 
Why Artificial Neural Networks?

As a preliminary effort to choose the best model for the incoming robotic sensor data I compared ANNs with the 
machine learning techniques Support Vector Machine(SVM), Naive Bias, and Logistic Regression. The resulting model 
scores and confusion matrixes are shown in Figure 3. 

Figure 3 (Model Score (80/20 test train split) and normalized confusion matrix of predicted state vs true states.)
ANN                                                SVM                                            Naive Bias                 Logistic Regression

From the above results, it's clear that an ANN will be the best choice for a predictive tool with the highest model 
score and best predictive power shown in the first confusion matrix. The next step taken was to make adjustments to
the ANN to get the best results and model score for the predicted robot states from the incoming sensor data so that it 
can best obstacle avoid. I used around 26,000 points of sensor data. Below in Figure 4 is the normalized confusion 
matrix of the best ANN model with a strong model score of .94. 

Figure 4 (Confusion Matrix of Obstacle Avoidance ANN model).              Figure 5( MobileNet SSD v2 CNN structure)

Object Detector using Convolutional Neural Networks
ANNs are not just used for determining sensor states and predicting actions to take. An ANN can also be used to 

train an object detector, from chosen labeled images, to detect and classify objects. Detecting and classifying gives it 
the ability to make decisions with the visual information from its surroundings. The ANN I used is similar to the one 
before except that I added convolutional layers making it a Convolutional Neural Network (CNN). CNNs have the same 
functions and very similar structures to ANNs, but adding convolutional layers that pool a set of data allows for 
condensing of important surrounding image features that one would want to be detected. To come up with this result 
the convolutional layer takes into account the values of close inputs this can be done by simply finding the sum or the 
average of the incoming inputs aka pooling. CNNs are known to work very well with data in a matrix, like an image, and 
this is why it is the best choice to be used.

More specifically I am training this object detector using MobileNet SSD v2 using TensorFlow’s API. Its structure can 
be seen in Figure 5 above. I am using TensorFlow to incorporate the new technology of TPUs (Tensor Processing Unit), 
the google coral, to run my detection algorithm at up to 40 FPS. I have trained it on the COCO dataset plus images of 
rocks, balls, and other robots. The detection of rocks and balls can be seen in Figure 6. My goal was to train the robot to 
identify a rock or a ball and initiate a picking up procedure. It uses its scoop and the detected pixel positions to lift the
object then travel to the destination of the object and place it down an example of the ball in the scoop is shown in 
Figure 7.
Figure 6 (Ball & Rock detection)     Figure 7(Ball Detection & lift in scoop)     Figure 8(Rock Detection for Mars Surface).

Path Planning
Another important feature that cannot be overlooked is the path planning of the vehicle. This is also a particularly 

tricky task due to no GPS, roads, and very few land features which creates a very hard problem for an autonomous rover 
and even a human. The easy solution for a construction rover would be to map the area and create waypoints to travel 
to and from. I overstepped this problem for SPOVIA Prime using a GPS GUI to plot the points for the rover to travel to, 
but many obstacles remain especially if it is a large rock in front of the rover that can discourage a straight path. I have 
attempted to uses the object detection program to detect the rocks in front and possibly avoid them, but seen in Figure 
8 this picture of the Martian surface, it is not the most reliable.

All of my work can be seen at https://www.youtube.com/channel/UCTCYvzO24Ebm68cVsQoy9Eg 
or MoveOverRover.

Discussion and Conclusion
Discussion 

SPOVIA Prime was very successful at the task of obstacle avoiding using the first ANN. It was a strong rarity that it 
hit any other detectable objects, although I did have the vehicle travel slower than I would have wanted. 
SPOVIA Prime was incredibly successful at detecting the objects it was trained to. From the color camera, it was able to 
detect rocks, balls, people, and cars (from the COCO dataset) like the examples seen in Figures 6 and 7. But, 
unfortunately when there were many examples to detect the object detection algorithm failed, seen in Figure 8. The 
more unfortunate news is that the Martian surface from Figure 8 will be the terrain the construction rover will have to 
mostly deal with, being that it is meant to be sent to rocky planetary bodies. 

A limitation I found is that the simulation avatar had minor differences then SPOVIA Prime, and those differences 
turned into a problem when moving the algorithm in the simulation to the real world. I believe this is why SPOVIA 
Prime's movements came out sloppy and jerky, but it did complete the task of obstacle avoidance, object detection, 
and path planning. I will say that I believe the RL most needs to be updated and changed, but the fault probably most 
falls on the 2D simulation.

For the main task of picking up a detected object and moving it to another location, it was both a success and a 
failure. SPOVIA Prime was easily able to detect an object and attempt to pick it. But even when SPOVIA Prime was able 
to grab the object it was unable to bring it to the chosen waypoint. I ended up settling for success in the robot's ability 
to detect, lift, and drive away with the detected object still in the scoop. 

Conclusion
As a figurative idea, the premise of using AI to make a rover autonomous perform actions is solid, but in the literal, 

it is much more difficult. Although each algorithm was trained well and was able to perform at its best by itself it was 
difficult to put together and I rarely got a successful example. The solution to this problem is to better match the 
algorithm with the physical vehicle. An even bigger problem was deciding which algorithm to carry out and when. I 
ended up making the obstacle avoidance ANN the priority and when it detected no obstacle the path planning took 
over followed by the object detector. The solution to this problem would be to make a good task manager for the 
robotic movements. This was something that I discovered during testing. The takeaways for a more successful 
autonomous prototype is more training and testing. I believe that in the future this concept will be successful because 
humanity is curious and will wonder what it is like to live on other celestial bodies, but due to the harsh environments, 
we will need robotic help to prosper.

Names: ANN SVM NB LR
Scores: 0.839 0.436 0.648 0.386

Future Work
Figure 10 (SPOVIA Spirit)

I plan to continue this project and demonstrate it again. I will go from a 
2D simulation to a 3D, use the object detector CenterNet instead of 
MobileNet, and create an ANN to be the task manager acting as a 
decision-maker for the SPOVIA Prime.

After, I plan to use swarm technology for robots to work together. In the 
object detection section, I mentioned training SPOVIA Prime to see my 
other robots because I want them to be able to classify each other and 
work together to get more difficult tasks completed. I have already been 
working on a partner construction rover seen in Figure 10.

Thank you for your time.
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ID25: Automating validation of satellite‐derived ice‐cover features: Discriminating ice objects in optical ice images with different degrees of local texture distortions 
Ekaterina Kim1,2,3 (ekaterina.kim@ntnu.no), Nabil Panchi4, Ole‐Magnus Pedersen3, Sveinung Løset2,3, Anirban Bhattacharyya4   
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Background  and motivation:  The  amount  of  data  from  satellite 
missions is expected to increase. In fact, this number increases faster than 
the capacity of experts  to process, adequately validate and evaluate  the 
uncertainty of the results. Despite rapid progress in machine learning, the 
methods and  standards  for automated  interpretation of  sea  ice  imagery 
remain underdeveloped. One such field is the automated interpretation of 
ice  imagery  from  ground  operations,  especially  under  poor  visibility 
conditions (e.g., imagery from surface vessels, shore stations, etc.). There is 
a  strong need  for  robust and efficient methods enabling  the automated 
processing of close‐range sea ice imagery to aid in the derivation of useful 
characteristics of sea ice cover (ice types, concentration, decay).  

How  accurately  can  ice  objects  in  close‐range  optical  images  be 
automatically detected and identified to supplement on‐ground operations 
and validate satellite‐derived sea‐ice products? 

Custom‐built  datasets  for  training,  validation,  and  testing:  375 
unique close‐range optical  images of  ice cover (three channel RGB,  jpeg), 
manually collected,  labeled  (following  ice object definitions and  labelling 
rules), and verified  (with an  ice expert). 14 classes:  Ice objects  (level  ice, 
deformed ice, brash ice, pancake ice, iceberg, floeberg, floebit, floe, broken 
ice, underwater ice) and additional features (shore, water, sky, melt pond). 

 

 

 

 

 

 

Figure1: Example images (clean images and distorted images with fog and brightness). 

Model  architecture:  Evaluated  12  open‐source  neural  network 
architectures: PSPNet, PSPDenseNet, DeepLabV3 Plus, UperNet, DUC HDC, 
FCN, GCN,  ENet, UNet, UResNet  (UNet with ResNet  backbone),  SegNet, 
SegResNet.  

Adds‐on:  Evaluated  performance  on  clean  and  distorted  images  (3 
distortion levels for fog, dark, blur, noise), with and without postprocessing 
(fully  connected  conditional  random  fields  and  faster  convolutional 
conditional random fields), various model ensembles, human factors, and 
compared model predictions with human performance.  

Performance  metrics:  Global  and  class‐wise  Accuracy,  mean 
Intersection over Union, Confusion Matrices, F1 score  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

We are currently working on  improving model 
performance  on  distorted  images,  making  it 
more  robust  on  previously  unseen  visual 
conditions.  In general, noise distortion has  the 
most profound effect on performance (Figure 3), 
whereas  the  fog  and  darkness  affect  the 
predictions  least,  when  the  performance  is 
measured in terms of mean IoU. 
Remarks:  This work  opens  a  possibility  for 
automation  of  ice  object  detection  and 
identification  from  georeferenced  close‐range 
optical  images  (e.g.,  imagery  from  surface 
vessels, shore stations, etc.). The identified and 
georeferenced  ice  types  that  can  serve  as 
ground‐truth  data  for  validation  of  satellite‐
derived ice‐cover features. 

We have highlighted an area where the current 
model  works  and  fails,  thus  giving  important 
indications  of where  to  direct  future  research 
efforts.  
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Results: The initial results from analysis of the model predictions (Figure 2 ‐ below) showed a relatively 
good  segmentation  of  clean  images,  with  the  mean  intersection  over  union  (IoU)  of  0.73  (fully 
convolutional U‐Net model with the a pretrained ResNet101 as encoder and convolutional conditional 
random fields based post‐processing of model outputs). 

 

Best results were achieved with PSPNet + 
postprocessing. 

Application areas: ice intelligence in 
support of satellite observations, ice 
navigation, station keeping in ice, ice 
management, automated reporting of ice 
conditions, crew training, education. The 
overall approach (labelling, model 
architecture, postprocessing) can be 
applied to imagery from airplanes, 
drones, etc.). 

Figure 3: Performace metrics. 

Figure 2: Typical examples of model 
predictions for various distortions. 

Education/Training Navigation, station keeping in ice, 
Ice management 

Automatet reporting of ice 
conditions 

Distorted level 2  Distorted level 3 Distorted level 1 Distorted level 0 
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Satellite Telemetry Data Challenges

A MACHINE LEARNING APPROACH TO LOW EARTH ORBIT SATELLITE HEALTH AND SAFETY TELEMETRY

Zhenping Li

ASRC Federal, 7000 Muirkirk Meadows Dr #100, Beltsville, MD 20705

• Anomaly detections without the separations of expected from unexpected
data pattern changes lead to false positives

• Correlations among multiple telemetry datasets in multiple subsystems must
be considered in separating normal operations from anomalies.

• Interactions among subsystems in a satellite lead to strong correlations among 
telemetry datasets.

• Data pattern changes due to normal satellite operations or anomalies 
generally involves multiple telemetry datasets in multiple subsystems.

A Hybrid Approach

The challenges in the data training of LEO satellite telemetry data 

• More diverse data types, High complexity in data patterns, and Relationships exists among datasets

The requirements for data training in operational environments
• Efficiency: data training for a dataset should be completed in seconds or minutes instead of hours or days.
• Accuracy: essential in detecting data pattern changes in datasets.
• Robustness: the training data may contain outliers that  distort data training outcome

The flexibility in selecting different data models for different patterns and noise level is critical

Data Training for LEO Satellite Telemetry Data

The Quantitative Metric Measuring Data Pattern Changes
Data pattern change metric:
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𝑂𝑁 𝑑 𝑡𝑖 =
𝛿 ∆ 𝑡𝑖 > 𝑁𝜎

𝑁𝜎
∆ 𝑡𝑖 − 𝑠𝑖𝑔𝑛 ∆ 𝑡𝑖 ∙ 𝑁𝜎

where

∆ 𝑡𝑖 = 𝑓 𝑡𝑖 , 𝑆𝑘 − 𝑑 𝑡𝑖
Normalized outlier is a dimensionless quantity so that different telemetry
data points can compare with each other.

Introduction

The machine learning (ML) approach includes 
• An architecture model that defines the machine 

learning processes and interfaces.
• A scalable and extensible enterprise

architecture for a ML system that provides
common infrastructure and services for ML
algorithms that are treated as mission specific
software components
• implemented in Advanced Intelligent Monitor

System (AIMS).
• A ML algorithm library that provides efficient

and accurate data training outputs for telemetry
data and instrument calibration data.

AIMS

LEO 
Telemetry 

Monitoring 

Radiometric 
Performance 
Monitoring

GEO 
Telemetry 

Monitoring 

Figure 1: AIMS has been applied to GEO, LEO 
telemetry data  monitoring and satellite 

instrument Radiometric performance monitoring 

• The Separation of expected data
pattern changes in normal
operations from unexpected data
pattern changes due to anomalies is
essential.
• Not all data pattern changes in

telemetry lead to anomalies, and
they also be result of normal
satellite operations or changes in
space environments

Figure 2  An anomaly example in an instrument radiometric 
data. The thick red line represents the actual data that became 

flat. The blue line and orange lines are ML model output and 
data bound.

Figure 3 The hybrid approach to anomaly detections in satellite telemetry
datasets.

Detect data pattern changes
through a supervised learning

• Learning normal data pattern in
datasets, while detecting data
pattern changes.

Separate anomalies from normal
operations with an unsupervised
learning

• Define a quantitative metric that
measures data pattern changes

Figure 4 The data training output
for the current and voltage in the
power system. The red dots are
the actual data and blue lines are
the data training outputs. The
datasets, such as the one in the
power subsystem or the satellite
temperature profiles, have
typical data patterns that follow
the satellite orbital behavior with
the same pattern period as the
orbital period.

Figure 5 The data training output for
the quaternions that determine the
satellite attitude. The data patterns
for the quaternions follows the
satellite orbit period. The quaternions
are generally not continuous. Neural
networks are generally implemented
as the data model for quaternions.
Detecting data pattern changes in
quaternion is critical in capture the
signature of satellite maneuver.

Figure 6 The data training output
for the momentum profile of the
reaction wheel. The red dots are
the actual data and blue lines are
the data training outputs. The
data patterns of reaction wheel
don’t follow orbital patterns and
highly complex. The Fourier
expansion model is implemented.

Figure 7 The data training output for
the motor-current in the reaction
wheel subsystem. There are
significant number of datasets that
are constant and noisy. The data
points in vertical lines are treated as
outliers that correlates with the
outliers in other datasets.

Figure 9 The outliers in the reaction wheel momentum profile
(left) are converted into normalized outliers (right). The
normalized outlier plots are used to highlight correlations among
telemetry datasets.

The Event Vector 
Both normal operations and anomalies can be regarded as events.
Events are characterized by event vectors consisting of the metrics 𝜓𝑖
for data pattern changes occurred in the same time period

𝒆 𝑡𝑖 , 𝑡𝑓 =
𝜓1

𝜓
,
𝜓2

𝜓
,…

𝜓𝑛
𝜓

where 𝑡𝑖 , 𝑡𝑓: start and time of an event

𝜓 = 

𝑖

𝜓𝑖
2

• Event vectors characterize correlations among telemetry datasets.
Patterns in event vectors provides signatures of normal operations
or anomalies

• Event vectors provide a mathematical representation in machine
learning for event classifications and anomaly detections

• Develop a mathematical representation to characterize correlations among
datasets

• Correlation patterns determine if data pattern changes are part of normal
operations or anomalies

Figure 10 An example of two events with outliers aligned at the
exact same time for multiple datasets in the reaction-wheel
subsystem. The outlier plot provides insights into the
correlations among datasets in multiple subsystems.

Event Vectors Are Hierarchical 
• A dataset can be defined by its physical 

hierarchical path: Subsystem/mnemonic/index

• An event vector can be defined at subsystem
level or mnemonic level by aggregation of event
vectors at lower levels

𝜓𝑆 = 

𝑀

𝜓𝑆,𝑀
2

and

𝜓𝑆,𝑀 = 

𝐼

𝜓𝑆,𝑀,𝐼
2

• Event vectors at higher levels reduces the space
dimensions while keeping sufficient information
for event classification and anomaly detections

• Perform clustering at different subsystem and
mnemonic level.

Hierarchical Event Clustering

Hierarchical Clustering Algorithm

Perform clustering for all events at subsystem level

Output noise events

For each cluster at subsystem level

Perform clustering for events mnemonic level

Output noise events

Clustering Criteria: Two events belong to the same cluster if 

𝒆𝒊 𝜓𝑆 ∙ 𝒆𝒋 𝜓𝑆 =
1

𝜓𝑖𝜓𝑗


𝑆

𝜓𝑆
𝑖𝜓𝑆

𝑗
≥ 𝛼𝑡ℎ

• The value for 𝒆𝒊 𝜓𝑆 ∙ 𝒆𝒋 𝜓𝑆 has the range from 0 to 1. 
• The value of 𝛼𝑡ℎ is between 0.95 to 0.98.
The events as part of normal operations are generally repeatable and happen
regularly, which form their own clusters.
The events corresponding to
anomalies are generally not
repeatable and happens
rarely with their own
characteristics, which are part
of noise in event clustering.

DBScan Clustering algorithm is implemented at each hierarchical level.

Clustering Outputs for LEO Satellite Data
The outputs of the clustering of 354 events over 75
days of the Suomi National Polar-orbiting
Partnership (NPP) satellite telemetry data includes
• The cluster dominated by the data pattern

changes in star tracker subsystem and the cluster
dominated by reaction wheel subsystems.

• Two orbit maneuver events.
• Two noise events are detected that are potential

anomalies.

Figure 11 The signature of events as a part of
the cluster dominated by data pattern changes
in the star tracker subsystem..

Figure 12 The signature of orbital maneuver event around 9:00z
and events as a part of the cluster dominated by data pattern
changes in the reaction wheel subsystem..

Figure 12 The signature of a noise event that is a potential
anomaly.
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Detection Model, Analyze Deliver Data

Data 
Products

Events

How are 
products 
generated 
from raw 
data?

What potential data 
sources are there (space, 
air, marine, in-situ)?  
Which of these sources 
need be tasked?  
How are they tasked?

When is an 
event 
happening?

Volcano

Overflight 
Calculator

Flooding Scheduling

Thermal Product

Tasking

Sensorweb concept and technologies 
• Aggregate data from satellite and in-situ sensors to track phenomena. 

• Use automated data analysis to generate prioritized alerts

• Use federated scheduling algorithms to plan observations for a given constellation, requesting 

imagery from both NASA and commercial assets as appropriate

Data Source Data Type Spatial Coverage
MODVOLC (MODIS, 
Terra+Aqua)

Thermal emission Worldwide 

VIIRS Active Fires Thermal emission Worldwide
Iceland Met Office Seismic Iceland
IGEPN (Ecuador) Reported Ecuador
Serganomin (Chile) Reported Chile
USGS Seismic Worldwide
Volcanic Ash Advisory 
(VAAC)

Reported Aviation 
Ashe

Worldwide (7 regions 
implemented)

Volcano Monitoring Data Sources End to end demonstration

Acquired Planet Skysat Scene 
13 Feb 2020 
Trigger: VIIRS (Active Fire) 
Target: Billy Mitchell

Acquired Planet Skysat Scene  
14 Feb 2020 
Trigger: VIIRS, MODVOLC 
Target: Nishinoshima

Acquired Skysat Scene 
14 Feb 2020 
Trigger: USGS Seismic 
Target: Mere Lava (Vanuatu)

Copyright 2021 California Institute of Technology All Rights Reserved. Government sponsorship acknowledged. 
Approved for Unlimited Release CL#21-0642

We have prototyped a volcano observation 
sensorweb to serve as a driving use case for 
sensorwor web technology development. In 
this effort we have operationalized tracking 
of a number of volcano monitoring sources 
(see table). 

In Spring 2020, we tested the above concepts 
in an end to end demonstration. Using the 
above triggers, we enabled automated 
tasking of the Planet Skysat constellation 
from a JPL sensorweb node. Three scenes 
were acquired in early February. 

This effort is part of the Earth Science 
Technology Office (ESTO) New Observing 
Systems (NOS) Testbed. ESTO NOS is bringing 
together technologists and scientists to 
integrate disparate modules to demonstrate 
new observation paradigms. 

We have previously used sensorwebs to task 
the EO-1 spacecraft for the Volcano and 
Thailand Flood sensorwebs. 



30. Evaluation of Path Planning Algorithms Using a 
Simulation Platform for Autonomous Surface Vessels

Anete Vagale, Robin T. Bye, Ottar L. Osen
Cyber-Physical Systems Laboratory

Norwegian University of Science and Technology
Ålesund, Norway

Contact information:
anete.vagale@ntnu.no

Problem: Improved safety while navigating on waters and reduction of col-
lision risk is a vital part of the guidance, navigation and control system of an 
autonomous surface vehicle.
But how to compare the performance of existing path planning and collision 
avoidance algorithms in a unified way?

Solution: To tackle this problem, a novel evaluation simulator platform (ESP) 
is proposed for simulation-based testing of algorithms.

INTRODUCTION

1) Evaluation Simulator Platform
The proposed ESP (see Fig. 1.) comprises the following input parameters 
needed for scenario generation and testing: map, static obstacles, dynam-
ic obstacles and their movement, environmental conditions (such as wind, 
waves, current), vessel’s dynamical model, algorithms that are going to be 
tested, and the safety evaluation function.
In each generated scenario, the vessel should successfully navigate in the 
generated environment from the initial pose to the end pose using different 
path planning/collision avoidance algorithms.

2) Multi-objective optimization
The ESP outputs are the algorithm performance results, based on: (i) path 
evaluation (here, a cost function), (ii) safety and risk assessment of the gener-
ated path, and (iii) good seamanship practice (the lower the score, the better) 
evaluation.
We propose to combine these evaluations in a multi-objective optimisation 
(MOO) problem (see Fig. 2.). The MOO is applied to evaluate the algorithms 
based on their performance ratings.

3) Safety and risk assessment 
For the safety evaluation purpose, a multi-layer safety map is formed con-
sisting of the following layers (see Fig. 3.): (i) static safety map, (ii) dynamic 
safety map, and (iii) other types of safety maps.
Individual risk values are read from the generated multi-layer safety map, 
and are combined into a total risk measure using a root sum square method.

METHODOLOGY

Aiming at the problem of there being no unified way of evaluating path 
planning and collision avoidance algorithms for ASVs, a novel evaluation 
simulator platform is proposed.
In this poster we have introduced:
• a concept of a novel evaluation simulator platform (ESP),
• safety maps generation approach,
• the safety assessment method based on root sum square method,
• the total algorithm performance evaluation based on (i) fitness (here, a 

cost function), (ii) safety assessment, and (iii) good seamanship practice.

CONCLUSIONS

Some of the future work ideas include: (i) validation of the proposed safe-
ty evaluation method, (ii) the use of maritime training simulators for val-
idating path planning algorithms, (iii) development of a credible evalua-
tion method for good seamanship practice and qualitative assessment, (iv) 
automatic scenario generation, and (v) human-in-the-loop evaluation.

FUTURE WORK

1

Fig. 1. The concept of the algorithm evaluation simulator platform

Result: Multi-objective optimisation

2. Safety assessment - S(p)

Total risk Individual risk values

3. Good seamanship practice – G(p)

2
1. Cost - F(p)

Weights

Voyage timePath length

Fig. 2. Algorithm performance evaluation

3

Fig. 3. The generation of each scenario
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ECOSTRESS
The ECOSystem Thermal Radiometer Experiment
on Space Station (ECOSTRESS) mission seeks to
better understand how much water plants need
and how they respond to stress. ECOSTRESS
measures the temperature of plants to understand
combined evaporation and transpiration, known as
evapotranspiration.

ECOSTRESS launched on June 29, 2018 to the
ISS (International Space Station) on a Space-X
Falcon 9 rocket as part of a resupply mission. The
instrument is attached to the Japanese Experiment
Module – Exposed Facility (JEM-EF) on the ISS
and targets key biomes on the Earth’s surface, as
well as calibration/validation sites. Other science
targets include cities and volcanoes. From the orbit
of the Space Station the instrument can see target
regions at varying times throughout the day, rather
than at a fixed time of day, allowing scientists to
understand plant water use throughout the day.
ECOSTRESS is expected to operate until mission
end in Summer 2019.

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
www.nasa.gov

Copyright © 2019 California Institute of Technology.
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ECOSTRESS Science Targets

Ring Buffer Issue
The Mass Storage Unit firmware onboard ECOSTRESS
implemented a ring buffer. However, the read and write
pointers did not correctly handle the buffer boundary, causing
lost data. Rather than perform a firmware update to the
instrument, CLASP was updated to automatically schedule
resets of the ring buffer to avoid the issue.

High priority targets are initially scheduled to determine
natural places where resets of the ring buffer should occur –
when the amount of data onboard will be low and the end of
the buffer has not been reached.

High and low priority targets are then scheduled, accounting 
for the times the ring buffer resets occur. 

Orbit Uncertainty 
Command sequences are uploaded weekly to
ECOSTRESS. Being in Low Earth Orbit (LEO), the ISS
experiences some drag from the atmosphere, causing it
to drift over time from its predicted location at the
beginning of the week. This can cause a planned
observation to miss its intended target.

Two strategies were developed to deal with the
uncertainty. They needed to account for the fixed size of
observations that ECOSTRESS takes and at least a
few seconds of extra time to ensure a target is not
missed.
1) Static Padding - Add ½ of an observation to the start

and end of each contiguous observation
2) Targeted Padding - analyzes the target regions and

calculates padding around the targets

When working with the same fixed data volume
constraints, Targeted Padding uses less data volume on
padding, therefore enabling it to cover more science
targets as seen above.

Radiation Sensitivity
One of the possible reasons for stalls of the Mass Storage
Unit on ECOSTRESS was radiation sensitivity. It was
found that most of the stalls were occurring in areas that
had higher levels of radiation, like over the South Atlantic
Anomaly and Low Latitudes. Many strategies for mitigating
this were analyzed, and CLASP assessed the impact of
the strategies on coverage.

Strategies included:
• Taking data and downlinking only on orbits overflying

Australia
• Turning off the MSU over the South Atlantic Anomaly

and Southern High Latitudes
• Not downlinking data over High Latitudes

Mass Storage-less Operations
After further operations, both Mass Storage Units on
ECOSTRESS became non-functioning. Updates to the
instrument firmware were developed to allow data to be
acquired and downlinked avoiding the MSU. CLASP was
adapted again to be able to schedule with a new set of
constraints.

New constraints included:
• Reduced onboard storage capability
• Greater downlink capability with removal of certain

spectral bands
• All data onboard must be downlinked at once to regain

use of storage

Observations scheduled over North America on February 28, 2019 

CLASP
The Compressed Large-scale Activity Scheduler and
Planner (CLASP) has been in use in various ways for
ECOSTRESS. Coverage planning technology in the
CLASP scheduler has been used in the aid of:
• evaluating designs of the overall science campaign

implementation prior to launch
• Generating command sequences for operations
• designing new science coverage strategies
• updated scheduling approaches to address hardware

challenges on orbit
Regions where the MSU needed to be powered down due 

to radiation 

Two Orbital Tracks of the ISS that view the same regions 
but at different illuminations

January 26, 2019 at 1:15 UTC

February 8, 2019 at 19:42 UTC

JPL Clearance CL 21-0369
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Summary
The Orbiting Carbon Observatory-3 (OCO-3) is a NASA 

instrument for measuring atmospheric CO2. OCO-3 
launched to on May 4, 2019 to the ISS (International Space 
Station) on a SpaceX Falcon 9 rocket as part of a resupply 
mission. It is mounted on the International Space Station on 
the Japanese Experiment Module – Exposed Facility (JEM-
EF). It is expected to begin nominal science operations in 
August 2019 and its planned mission duration is three 
years. OCO-3 will enable identification of CO2 sources and 
sinks and study changes in CO2 levels over time.

Automated scheduling is being deployed for operations 
of OCO-3. The OCO-3 scheduling process begins with a 
mostly-automated dynamic science priority assignment that 
is input to an automated scheduling of area targets, 
calibration targets, nadir, and glint mode. It is also being 
used to schedule observations for the calibration of the 
pointing mirror.  

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

Copyright © 2019 California Institute of Technology. 
U.S. Government sponsorship acknowledged.

Checking Visibility
OCO-3’s field of view is limited due to obstructions by other 

components of the ISS. The scheduling software must account for the 
limitation without sacrificing too much runtime or precision. The occlusion 
mask is defined as a set of polynomials for several longitude segments. 
We currently check visibility for area map mode, target mode, and glint 
mode.

To check if a target is visible at a particular point in time, we project 
the target onto the unit sphere around the satellite. This gives us an 
azimuth/elevation point that can be checked for inclusion in the visibility 
set.

For glint mode, this approach is satisfactory. But for area map and 
target mode, we do not know exactly where the PMA is pointed at any 
time. We consider three approaches to addressing this complication:

• Centroid: Project the centroid of the target and check visibility set
• Corners: Project the corners of the target and check visibility set
• Configuration space: Define a configuration space that characterizes 

all points on the unit sphere that represent the centroid of a visible 
target. Project only the centroid of the target on the unit sphere and 
check if that the point falls within the configuration space.

Operational Modes
Nadir mode Glint mode

Area Mapping mode Target Mapping mode

Pointing Mirror Assembly Calibration

Glint spot

Observe a single stripe over the target point repeatedly
Observe several non-overlapping stripes over the target area

Agile pointing

Agile pointing of 2d sensor to cover area12

A visualization of part of a generated schedule

A visualization of the “keepout zone” (in grey) that the 
scheduling software must avoid pointing the PMA at

Azimuth, elevation target points that are observed to calibrate the PMA

To calibrate the Pointing Mirror Assembly (PMA), 
observations are taken from a set of pointings relative 
to the instrument body. The observations must be taken 
over land in daytime to be compared to reference 
images to determine the error in the pointing based on 
the ISS location. Corrections are then applied to 
minimize the pointing error for future observations.

While the current OCO-3 scheduler does not schedule
fine instrument pointing (this is controlled in flight
software), technology exists in the Eagle Eye system12 to
construct detailed pointing plans to cover arbitrary
polygons.

Default mode over land in the daytime Measurements taken over water near 
the glint spot to maximize the signal

Measurements taken over regions of 
interest, such as a city 

Measurements taken over a specific 
point, such as a validation site 

JPL Clearance CL 21-0368
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Linear Front Detection and Tracking

Front Delineation and Tracking with Multiple Underwater 
Vehicles
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Project Summary:
Space based remote sensing provides great information about ocean 

dynamics. However, remote sensing information is generally limited to 
measuring the ocean surface or the upper layer of the ocean. Ocean models 
can further augment this information. However, in order to probe the 
immense volume of the ocean most accurately generally requires marine 
vehicles such as autonomous underwater vehicles (AUVs), Seagliders, 
profiling buoys, and surface vehicles sampling in-situ. Deploying and 
operating these assets is very expensive. This means there is a very limited 
number of marine vehicles compared to the massive size of the ocean. 
Knowing where the assets should be deployed and operated is very difficult. 

One strategy is to deploy in-situ assets to study specific scientific features 
such as fronts, eddies, upwellings, harmful algal blooms, or other features of 
interest. A typical strategy would be to deploy marine assets to measure 
transects across the feature of interest at a scale that covers the feature, as well 
as a baseline signal around the feature. However, asset capabilities (e.g. 
mobility, endurance) and prevailing ocean currents may render these science 
goals unachievable. Our project targets automatic detection and tracking of 
these features and generation of mission plans for assets to follow these 
science derived templates relative to projected feature motion. 

From 22 October to 30 October 2016 the project team deployed an 
underwater glider executing feature prediction using a predictive ocean model 
and adaptive sampling near Monterey Bay, CA. The glider was commanded 
along a given transect, at each surfacing features were extracted from the 
model based on the vehicles expected path. The vehicle was then commanded 
along the path that resulted in the observation of the most interesting science 
features.

From 27 April to 11 May 2017 the project team, along with MBARI, 
deployed a heterogeneous fleet of marine vehicles including Tethys and Iver 
AUV’s and gliders executing linear front detection and retasking near 
Monterey Bay, CA. Multiple vehicles were used performing parallel transects 
to autonomously detect an ocean front, fit a linear estimate to those 
detections, and re-command the vehicles to repeatedly cross the front.

Glider Feature Chasing
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Spatial Nested Search

Simulation

Rover

Approach
• Progressively higher resolution 

nested surveys to pinpoint maximum 
vent fluid concentration

• Three Search Phases:
• Initial spiral survey
• Dynamic lawnmowers
• Nested lawnmowers

Objectives
• Perform high resolution survey of 

region immediately surrounding 
hydrothermal venting

• Autonomous adaptation of proven 
human-in-the-loop search method [3]

• Must maintain robustness to local 
maxima and small-scale turbulence

Predecisional, for planning and discussion only.

Hydrothermal Venting Model
• FVCOM based circulation and hydrothermal 

plume model of Axial Seamount
• 1 GW heat source in the Axial caldera
• Initial forcing constructed with HYCOM and 

OSU Tidal Inversion models
• 300x300 km, 60 day simulation
• Model variables: temperature, salinity, 

currents, passive tracer

Motivation
• 8+ bodies in the Solar System are thought to 

harbor sub-surface liquid oceans, including 
Europa and Enceladus

• Earth-based hydrothermal vents harbor unique 
life and are potentially crucial to the origin of life

• Potential hydrothermal venting on Europa
• Evidence for hydrothermal venting on 

Enceladus [4,5]

Ocean Worlds Submersible 
• Single under-ice base station provides 

communication to Earth
• Travel 100s of km from base station
• Limited communication with Earth due to orbital 

occlusions and underwater acoustic communication 
range

• Fully autonomous operations required for weeks or 
months at a time

• Goal: Autonomously detect, locate, and sample 
hydrothermal venting

Hydrothermal Plumes
• Chemically altered seawater detectible through 

temperature, redox, and optical backscatter
• Hot, low density plume fluid exits vent forming 

buoyant plume [2]
• Density equilibrium reached and non-buoyant plume 

formed [2]
• Source vent can be tracked using the hydrothermal 

plume 

[1] Burian, Erik, et al. 1996. Gradient search with autonomous underwater vehicles using scalar measurements." Proceedings of Symposium on Autonomous Underwater Vehicle Technology. IEEE.
[2] German, C., and Seyfried, W. 2014. Hydrothermal processes. Treatise on geochemistry 8:191–233.
[3] German, C. R. el al. 2008. Hydrothermal exploration with the autonomous benthic explorer. Deep Sea Research Part I: Oceanographic Research Papers 55(2):203–219.
[4] Hsu, H. W. et al. 2015. Ongoing hydrothermal activities within enceladus. Nature 519(7542):207.
[5] Waite, J. H. et al. 2017. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science 356(6334):155–159.

Credit: IFE, URI-IAO, UW, Lost City Science Party; NOAA/OAR/OER; The Lost City 
2005 Expedition
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Simulated Results
• 25 simulation runs per algorithm with starting 

x,y uniformly distributed from [-30,30] km
• Nested Search better estimates the vent 

location over baseline methods, however 
with longer search times. See table and left 
figure below.

Dynamic Lawnmower
• Performed at first contact with plume
• Variable size lawnmower survey to 

determine the extent of the plume
• Data binned at resolution of survey to 

determine local maxima

Nested Lawnmowers
• Perform recursively higher resolution 

surveys of previously searched regions
• Each survey encompasses local maxima 

and surrounding bins
• Prioritized based on average plume 

strength of bin and survey resolution 

Image courtesy of C. German, WHOI

Spiral Survey
• Spiral centered at the base station
• Yo-Yo pattern from surface to seafloor 

to locate non-buoyant plume
• Terminates on first contact with plume 

above specified threshold

Image Credit: Marcel Nicolaus, AWI

1Jet Propulsion Laboratory, California Institute of Technology
2Woods Hole Oceanographic Institution

3Naval Research Laboratory

Baseline Search Methods
Gradient Ascent
• Determine the plume gradient at a location and 

follow it towards stronger plume fluid [1]
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Greedy Transect
• Direction Set: Perform fixed pattern searching for 

increased plume strength. Repeat this pattern at 
new maxima until no new max plume values are 
seen [1]

Demonstration onboard Iver AUVSimulation Results: Distance from 
True Vent Location Vs. Time

Deployment
• Deployed Nested Search algorithm onboard an Iver AUV in 

Chesapeake Bay with NRL in June 2019
• Successfully demonstrated the vehicle locating the simulated vent 

source location, see right figure below

Example Nested Bin Search Result
Algorithm Nested 

Search
Gradient 
Ascent

Greedy 
Transect

Success Rate
(< 200m of ground truth)

80% 56% 4%
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